

Copyright 2022 c⃝ Thiadmer Riemersma, CompuPhase.
This work is licensed under the Creative Commons Attribution-NonCommer-
cial-NoDerivatives 4.0 International License (BY-NC-ND). To view a copy of
this license, visit https://creativecommons.org/licenses/by-nc-nd/4.0/ or send
a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
This book is available in PDF format on the CompuPhase web site and on
GitHub, along with utilities and coding examples. See Further Information on
page 131 for a link.
The cover image is by Arek Socha.
ISBN 9789090349879

Typeset with TEX in the “DejaVu” typeface family.

ii Embedded Debugging with the Black Magic Probe

Contents
Introduction .1

Hardware and Software .1
Why bother, why choose the difficult route? .2
About this Book . 3
License .4

The Debugging Pipeline . 5
GDB Architecture .5
The Serial Wire Debug Protocol in a Nutshell .7
Embedded Debugging: Points for Attention . 10
Requirements for Front-ends .11

Hardware Overview . 13
Accessories . 15

Setting up the Black Magic Probe .19
Microsoft Windows (USB set-up) .19
Linux (USB set-up) . 21
Wi-Fi set-up for ctxLink .23
Connecting the Target . 25
Checking the Set-up .26
Running Commands on Start-up . 27
Design for Debugging .28

Debugging Code . 31
Prerequisite Steps .32
Loading a File and Downloading it to the Target . 32
Starting to Run Code .36
Getting help and information .37
Listing Source Code .37
Downloading code into the microcontroller .38
Stepping and Running . 38
Breakpoints and watchpoints . 40
Examining Variables and Memory . 42
The Call Stack . 44
Inspecting Machine Code .45
Debug Probe Commands .45
The BlackMagic Debugger Front-end . 50
Edit-Compile-Debug Cycle .58
Debugging Optimized Code . 59

Embedded Debugging with the Black Magic Probe iii

Run-Time Tracing .60
Levels of Tracing . 60
Secondary UART . 61
Semihosting .61
SWO Tracing .65
Real Time Transfer (RTT) .75
Tracing with Command List on Breakpoints . 77

The Common Trace Format . 79
Binary Packet Format . 81
A Synopsis of TSDL . 81
Generating Trace Support Files .90
Integrating Tracing in your Source Code . 91
Mixing Common Trace Format with Plain Tracing . 92

Applications for Run-Time Tracing .93
Code Assertions . 93
Tracing Function Entry and Exit .96

Code Profiling .99
Sampling on ARM Cortex .99
Calltree Analysis . 101

Firmware Programming .104
Using GDB .104
Using the BlackMagic Flash Programmer . 104

Updating Black Magic Probe Firmware .110
Troubleshooting .113

Check whether the system detects the probe . 113
Check whether the probe detects the target . 114
Target scan hangs .117
GDB crashes on “attach” .118
Failure to erase Flash memory . 119
Spying on the communication . 119
How to Reset the Black Magic Probe . 120
TRACESWO Capture .121
RTT capture . 122
TTL-Level UART .122
GDB on Microsoft Windows .122

Microcontroller Driver Support . 124
Unified Connector: Debug + UART .127
Linking TRACESWO to UART-RxD . 129
Further Information .131

Hardware .131
Software . 131
Articles, Books, Specifications .133

iv Embedded Debugging with the Black Magic Probe

Index .134

Embedded Debugging with the Black Magic Probe v

Introduction
The “Black Magic Probe” is a combined hardware & software project. At the
hardware level, it implements JTAG and SWD interfaces for ARM Cortex A-
series and M-series microcontrollers. At the software level, it provides a “gdb-
server” implementation and Flash programmer support for ranges of micro-
controllers of various brands. The hardware was designed by 1BitSquared
in collaboration with Black Sphere Technologies. The embedded software of
the Black Magic Probe is an open-source project (the hardware is less open:
schematics are available for legacy versions of the hardware, but not for the
current version).

At the time of writing, the Black Magic Probe hardware is version 2.3, and
the firmware is at version 1.8. The firmware in the Black Magic Probe is in
ongoing development, so the firmware in newly purchased probes may be
behind the current release, see also Updating Black Magic Probe Firmware on
page 110). Derivatives of both hardware and firmware exist, with sometimes
different capabilities or limitations. This book focuses on the native hardware,
and firmware version 1.6 or later —but it includes notes on two commercially
available derivatives where applicable: ctxLink and the Jeff Probe.

Hardware and Software
Separate from the MCU core, the ARM Cortex series have a Debug Access
Port (DAP) that gives you access to the debugging features of the microcon-
troller. On older architectures, the debugging interface used the JTAG port
and protocol, but for the ARM Cortex series, a new protocol that required less
physical pins was designed: the ARM Serial Wire Debug protocol (SWD). This
protocol gives you access to features like single-stepping, hardware break-
points and watchpoints, dumping memory regions and programming Flash
memory. Like was the case with the JTAG interface, the SWD interface is
meant to be driven by a hardware interface, a debug probe.

Embedded Debugging with the Black Magic Probe 1

The Black Magic Probe is such a debug probe. The “black magic” that it adds
to alternative debug probes is that it embeds a software interface for GDB, the
debugger for GNU GCC compiler suite —a widely used compiler for microcon-
troller projects. It is the closest that a debug probe can come to plug-&-play
operation.

Next to the Black Magic Probe, you need GDB, and more specifically, the GDB
from the toolchain that you use to build your embedded code. For the ARM
Cortex-A and Cortex-M microcontrollers, this typically means the GDB from
the arm-none-eabi toolchain.1

While you do not need a debugger front-end, it is beneficial to get one. When
you are running on Linux, you may get by with GDB’s integrated Text User
Interface —it’s rudimentary, though. See Requirements for Front-ends (page
11) for tips to select a front-end.

Why bother, why choose the difficult route?
Advice that I have repeatedly seen on blogs and answers on stackoverflow
(and others), is to make the software modular, debug each module on a desk-
top PC or laptop, and to then assemble the embedded application from these
fully tested and debugged modules. The implied message is that embedded
software is fundamentally the same as desktop software, but you have the
cream of the crop in development tools on desktop systems.

Allow me to draw a parallel from a different field: From the earliest days
of medicine, the focus has been on studying the physiology of men. It was
assumed that the female body responds to medication and drugs in the same
way as that of men. Up to the 1960s, clinical trials for a new drug were done
on sometimes thousands of men, and zero women. Women, after all, would
supposedly only bring “confounding issues” to the trials, due to their alleged
emotional instability and fluctuating hormone levels. It leads to absurdities
like a clinical trial in 2015 for Addyi, a drug to treat female sexual dysfunction.
The trial involved 23 men and 2 women —a drug exclusively for women tested
almost exclusively on men. All the while, the presumption that the female
body is that of a man (though with confounding issues) is entirely unfounded.
Sex bias in medicine isn’t based on facts, but a symptom of complacency and
indifference.

Embedded devices are a varied lot, but as a general rule, they are not just
a PC with confounding issues. Software that runs fine on a desktop system
may fail on the target microcontroller. Not every microcontroller handles

1 With a caveat for GDB versions 11.x, up to 12.1. These releases have a bug that makes GDB
fail to connect to the target microcontroller. See page 118 for details.

2 Embedded Debugging with the Black Magic Probe

unaligned memory access alike, for example. Embedded devices commonly
have (integrated) peripherals that desktop systems lack, and on an embedded
device those peripherals will be driven with the SPI or I2C protocols, rather
than USB.

The recommendation to develop and debug embedded software on a desktop,
on the dogma that it should then run alike on the embedded device, is similarly
based on an invalid assumption and an ill-advised desire to stick with the
familiar tools and environment. It will actually work on specific cases, such
as a generic data structures library, but it is a bad strategy overall.

In my consulting work, I get occasionally to listen to a “war story” by a fellow
developer, about failures, glitches and missed interrupts. But in a simulator
on a PC it ran flawlessly, so. . . Often, the issue was circumvented rather than
solved. For example, to “fix” a case of an occasionally missed interrupt, the
developer set an interrupt on both rising and falling edges of a pulse because
it hadn’t happened yet that the MCU missed two interrupts in succession.
Sometimes the hardware was redesigned to use an MCU of a different brand
or architecture (but yet, without evidence that the original MCU was at fault).
Frequently, the frustration about the wasted time and resources hadn’t sub-
sided yet —one developer claimed to have “even switched to Torx screws” so
much he had come to detest Philips.2

I was not there to debug their systems, so we will never know the truth. The
point is, developing code intended to run on an embedded device and testing
it exclusively on a desktop system, is as absurd as developing a drug exclu-
sively for women and testing it on men. And while these companies found
workarounds, the real point is the wasted time and resources, both of which
cost money.

About this Book
This guide is not a book on GDB. That book is The Art of Debugging with GDB,
DDD and Eclipse by Norman Matloff and Peter Salzman,3 and which is highly
recommended. This guide does not delve into the hardware and software
design of the Black Magic Probe, either. The software of the Black Magic Probe
is open-source, hosted on GitHub, and information on the hardware is best
obtained from 1BitSquared (the manufacturer).

2 It didn’t help me laughingly pointing out that the well known cross-slotted screw head is
Phillips —double “l” and entirely unrelated to the semiconductor brand Philips (now NXP).

3 Matloff, Norman and Peter Jay Salzman; The Art of Debugging with GDB, DDD, and Eclipse;
No Starch Press, 2008; ISBN 978-1593271749.

Embedded Debugging with the Black Magic Probe 3

Instead, this guide aims at describing how to use the Black Magic Probe to de-
bug embedded software running on an ARM Cortex microcontroller. It starts
with an overview of the debugging pipeline, from the target microcontroller to
the visualization of the embedded code on your workstation. Debugging em-
bedded code usually implies remote debugging (with the code that is being
debugged running on a different system than the debugger), but also cross-
platform debugging. A broad understanding of these is helpful when making
practical use of the Black Magic Probe.
The next chapters focus on setting up the hardware and software for the Black
Magic Probe, and then a selection of GDB commands, with a special focus on
those that are particularly useful for debugging embedded code.
Run-time tracing is an essential debugging technique for embedded systems,
due to the real-time requirements that these systems often have. Coverage
is split in three chapters: the first on the hardware and software support in
the Black Magic Probe, the second on generic techniques to perform tracing
efficiently, and the third on particular applications of run-time tracing.
The Black Magic Probe can also be used for production programming of de-
vices, through the same mechanism that GDB uses to download code to the
target for purposes of debugging. This is the topic of another chapter, using
both GDB and a separate utility.
The final (short) chapters are on updating the firmware of the Black Magic
Probe itself and adding support for new microcontrollers to the GUI utilities
that accompany this guide.

License
This guide is written by Thiadmer Riemersma and copyright c⃝ 2020–2022,
CompuPhase. It is licensed under the Creative Commons BY-NC-ND 4.0 In-
ternational License (Attribution-NonCommercial-NoDerivatives).
The associated software is copyright c⃝ 2019–2022 CompuPhase and licensed
under the Apache License version 2.

4 Embedded Debugging with the Black Magic Probe

The Debugging Pipeline
Developing embedded software on small microcontrollers presents some ad-
ditional challenges in comparison with desktop software. The software is typ-
ically developed on a workstation and then transferred to the target system.
Accordingly, cross-compiling and remote debugging are the norm. Remote
debugging implies the use of a hardware box or interface to connect the work-
station to the microcontroller’s debug port & protocol. On the ARM Cortex
processors, the most common debug and Flash programming protocols are
JTAG and SWD (Serial Wire Debug).

In the idiom of remote debugging, the target is the device being debugged,
and the host is the workstation that the debugger runs on. The interface
between host and target is the probe. A debug probe typically connects to
the workstation’s USB, RS232 or Ethernet port.

GDB Architecture
GDB is the GNU Debugger for programs built with GCC. It is also a debugger
framework, with third-party front-ends and machine/protocol-specific back-
ends.

GDB’s user interface is, by today’s standard, rather rudimentary, but GDB
provides a “machine interface” to “front-ends”, so that these front-ends can
provide a (graphical) user interface with mouse support, source browser, vari-
able watch windows, and so forth, while leaving symbol parsing and execution
stepping to GDB. Most developers who use GDB actually run it hidden behind
a front-end like Eclipse, KDbg, DDD, or the like. As a side note, a text-based
front-end is built-in: TUI, and while it is an improvement over no front-end
at all, TUI is not as stable as the alternatives (it is also broken on Microsoft
Windows, and there is no plan to fix it).

To debug a different system than the one where the debugger runs on, GDB
provides the Remote Serial Protocol (RSP). This is a simple text-based proto-
col with which GDB on the workstation communicates with a debugger “stub”
on the target system. This stub acts as a server that GDB connects to, over
an RS232 or Ethernet connection, and it is referred to as a gdbserver.
Directly implementing a gdbserver on the target is impractical for microcon-
trollers such as the ARM Cortex M series. These microcontrollers provide
hardware support for setting breakpoints and stepping through code, but
make it available on a separate interface with dedicated pins for the task. On
the ARM Cortex, this is Serial Wire Debug interface (SWD). To drive the serial
wire protocol, a debug probe is needed: a hardware interface that drives the
clock and data lines according to the SWD protocol. Common debug probes

Embedded Debugging with the Black Magic Probe 5

are SEGGER J-Link and Keil ULINK-ME. The gdbserver functions as an inter-
face to translate between GDB-RSP and the protocol of the hardware inter-
face.

As is apparent, the debug data goes through a few hoops before the devel-
oper sees the code and data on the computer display in “GDB.” The OpenOCD
project is an example of this set-up.1 The main openocd program implements
gdbserver, and it opens a Telnet port for the communication link to GDB and
a USB, RS232 or Ethernet connection to the debug probe.

The Black Magic Probe embeds gdbserver. One advantage of this design is that
its gdbserver has in-depth knowledge of the capabilities of the debug probe
as well as what the debug probe has discovered about the target. The only
configuration that needs to be done in GDB is the (virtual) serial port of the
Black Magic Probe (the USB interface of the Black Magic Probe is recognized
as a serial port on the workstation).
The ctxLink debug probe functions identically to the Black Magic Probe when
connected to the USB —in fact, it even uses the same VID:PID codes. How-
ever, ctxLink also offers connection over a Wi-Fi link. In relation to the dia-
gram above, this changes very little: in essence, you only need to change the
caption of the “USB” link to “Wi-Fi” (disregarding that there is also a wireless
switch or access point thrown in the mix). But the implication is that while the
range of a USB-connection is limited, ctxLink makes the debug probe accessi-
ble over the local network and (after configuring the router) over the internet.

1 In a “hosted” set-up, the Black Magic Probe also uses this configuration: the main firmware
of the Black Magic Probe (with the embedded gdbserver) runs as a desktop application on the
workstation, and the Black Magic Probe hardware is reduced to function as a dumb probe.
See section Check whether the probe detects the target on page 114 for more information
about this option.

6 Embedded Debugging with the Black Magic Probe

Thereby, ctxLink enables debugging over a technically unlimited distance.

Bypassing GDB
While the Remote Serial Protocol (RSP) is specifically designed for GDB (to
communicate with gdbserver in a debug probe), it is well-defined and well-
documented, and therefore other tools can use it without requiring GDB. In
fact, the BMTrace (page 73) and BMFlash (page 104) utilities do exactly this.
These utilities use a fairly limited subset of the capabilities of gdbserver.
Troll is a source-level debugger for ARM Cortex architecture using GDB’s RSP,
and it is thereby compatible with the Black Magic Probe. The Troll debugger
is still an experimental project; see Further Information on page 131 for a link
to the project.

The Serial Wire Debug Protocol in a Nutshell
The Serial Wire Debug protocol (SWD) is designed as an alternative to the
JTAG protocol, for microcontrollers with a low pin count. It is part of the
ARM Debug Interface specification version 5, abbreviated as ADI5. At the
physical layer, it needs two lines at the minimum (plus ground), as opposed
to five for JTAG. These two lines are the clock (SWCLK, driven by the debug
probe) and a bidirectional data line (SWDIO). Tracing output goes over a third
(optional) line: TRACESWO, but using an unrelated protocol (independent of
SWCLK) —see section TRACESWO Protocol on page 8.

The SWCLK signal is driven by the debug probe, regardless of the direction
of the transfer. Each transaction starts with a request, that the probe sends
to the target. The target replies by sending an acknowledgement back. After
that, a data phase follows, which may be in either direction, depending on the
request.
The target microcontroller polls the SWDIO pin on a rising edge of SWCLK, and
also drives the pin on a rising edge. When idle, the SWCLK and SWDIO pins
are driven low by the debug probe.
As is apparent, the direction of the SWDIO line switches between input and
output at least once during a transaction, on both sides. The SWD protocol

Embedded Debugging with the Black Magic Probe 7

calls this the turnaround, and there is an extra clock cycle for each turnaround
in the transaction. The pictured example is for a write transaction; in a read
transaction, there is no turnaround after the ACK —however, if another trans-
action follows head-to-tail, a turnabout is added after the data phase.

The request phase is a sequence of 8 bits. First comes a start bit (always 1).
The AP bit is 0 if this transfer is for the Debug Port (DP), and 1 if it is for an
Access Point (AP) such as MEM-AP, which provides access to core memory
and peripheral registers. The R bit is 1 for a read request and a 0 for a write
request. There are two address bits, to access the debug registers. The P
bit is a parity bit, it is set such that the sum of the bits in the request byte is
even. Following the parity bit are a stop bit and a park bit, which are 0 and 1
respectively.

The ACK is a three bit sequence with the value 1 (on success), sent with the
low bit first. The data is likewise transmitted low bit first. After the 32-bits
of data are transmitted, another parity bit follows (calculated such that the
sequence of 33 bits has even parity).

With two address bits in a transfer request, you can only address four regis-
ters. To access code or data memory, the access port of the AHB provides the
TAR register. In this register, you set a memory address so that you can read
from or write to that memory location on a subsequent transfer. A peculiarity
of the SWD protocol is that a read transfer returns the value from the pre-
vious transaction. Hence, to read the current value of a register or memory
location, you need to perform the read operation twice, and discard the first
result.

Before a microcontroller’s SWD port is serviceable, an initialization sequence
must be performed, part of which is to switch the protocol from JTAG to SWD.
Some ARM Cortex microcontrollers do not support JTAG, but the protocol
requires that the JTAG-to-SWD switch is still performed.

TRACESWO Protocol
The TRACESWO protocol is independent of the SWD protocol. You can trace
without debugging, as well as debug without tracing. The data is transmit-
ted over a single line using one of two serial formats: asynchronous encoding
and Manchester encoding. The ARM documentation occasionally refers to
these encodings as NRZ and RZ (Non-Return-to-Zero and Return-to-Zero) re-
spectively. The TRACESWO protocol is handled by the Instrumentation Trace
Macrocell (ITM) of the ARM Cortex core.

The asynchronous encoding is in essence TTL-level UART, with a start bit,
eight data bits, one stop bit and no parity. As is common with UART protocols,
the target and the debug probe must use the same bit rate within a narrow
margin. Since the UART clock is typically derived from the microcontroller

8 Embedded Debugging with the Black Magic Probe

clock, at high bit rates it becomes harder to find a bit rate shared by both the
target and the debug probe within the required margin.

Manchester encoding, on the other hand, has the property that the clock fre-
quency can be established from the data stream. This makes it a self-adapting
protocol, tolerant to jitter and insusceptible to clock drift. These properties
make Manchester encoding the option of choice for microcontrollers that lack
hardware support for SWO tracing (such as the ARM Cortex-M0 and Cortex
M0+ architectures) because it is easier to implement it with bit-banging. A
drawback of Manchester encoding is that the encoding takes two clocks per
bit, which means that the maximum bit rate is typically half as high as for
asynchronous encoding.

The physical Manchester protocol on the TRACESWO pin transmits sequences
of 1 to 8 bytes, where each sequence is prefixed with a start bit (a 1-bit) and
suffixed with a “space.”

The pin is low on idle; a 0-bit has a rising edge halfway the bit period, a 1-bit
has a falling edge halfway the bit period, and a space is a low level for the full
bit period.

Obviously, since a 1-bit starts high, if the pin is low at the start of the bit
period, there is also a rising edge at the start of the 1-bit. This occurs when
the previous bit is also a 1-bit, or when the previous state was idle or space.
Similarly, there is a falling edge at the start of a 0-bit if the pin is high at the
start of the 0-bit, which occurs when the previous bit was also a 0-bit. A space
resets the decoder state back to idle.

Although Manchester is a bit transmission protocol, the ITM always transmits
a multiple of 8 bits of data (least-significant bit first). After a start bit and up to
64 data bits (8-bytes) have been transmitted, a space follows and after that (if
there is more data to transmit) a new start bit plus another sequence of data.
This short interruption after every 64-bits is to resynchronize the bit stream.
The start bit is needed to determine the clock frequency of the protocol (the
start bit is transmitted from idle state, so there is a rising edge at the start of
the bit and a falling edge half way), and the space at the end of a sequence is
needed to properly decode the next start bit (it needs to come after a known
state).

At a higher level, the TRACESWO protocol transmits packets consisting of an
8-bit packet header followed by a 32-bit payload (transmitted low byte first).
The protocol uses trailing-zero compression on the payload, which means that
if only one or two bytes are transmitted, these form the low bytes of the 32-bit

Embedded Debugging with the Black Magic Probe 9

word and the high bytes of that word are assumed zero.
The header byte contains the channel number in the highest five bits. The
low three bits indicate the number of payload bytes that follow; the value can
be 1, 2 or 3, where 3 means that four payload bytes follow.

Events generated by the Data Watchpoint & Trace unit (DWT), that the ITM
passes through, use a packet header as well. The three low bits in the header
are are set to combinations that are invalid for a trace message. Thus, trace
monitoring applications can test the three low bits to check whether to pro-
cess or reject a packet.

Embedded Debugging: Points for Attention
On desktop computers and single-board computers, programs run in RAM.
A debugger sets a breakpoint at a location by storing a special software in-
terrupt instruction at that location (after first saving the instruction that was
originally at that location). When the instruction pointer reaches the loca-
tion, the software interrupt instruction causes the corresponding exception
to be raised, which is intercepted by the debugger, which then halts the tar-
get progra,. The debugger also quickly puts the original instruction back into
RAM, so that when you resume running the target, it will execute the original
instruction.
Current microcontrollers often have limited SRAM, but a larger amount of
Flash memory. The program for microcontroller projects therefore typically
runs from Flash memory. For the purposes of running code, you may regard
Flash memory as ROM; technically, it is re-writable, but re‑writing is slow
and needs to be done in full sectors. The upshot is: a debugger cannot set
a breakpoint by swapping instructions in memory because the memory (for
practical purposes) is read-only.
The solution for the debugger is to team up with the microcontroller and tell
the microcontroller to raise an exception if the instruction pointer reaches a
particular address. This is called a hardware breakpoint (the former break-
points are occasionally called software breakpoints). However, ARM Cortex
microcontrollers provide only few hardware breakpoints, typical values are
below:

Core Breakpoints Watchpoints
Cortex M0 / M0+ 4 2
Cortex M3 / M4 6 4
Cortex A / R 6 2

10 Embedded Debugging with the Black Magic Probe

A common architecture for an embedded application is one where the system
responds to events (from sensors, switches, or a databus) in a timely manner.
The criterion “timely” regularly means: as quickly as possible, which then
means that it is common to handle the event (and its response) in an interrupt.
With crucial activity happening in various interrupt service routines, a puzzle
that frequently pops up is that a global variable (or a shared memory buffer)
takes on an unexpected value. A watchpoint can then tell you where in the
code that variable got set. A watchpoint is a breakpoint that triggers on data
changes. As with breakpoints, you will want hardware watchpoints, so that
setting a watchpoint won’t interfere with the execution timing of the code.

Code that is stopped and stepped-through may not follow the same logic
flow as code that executes in normal speed, because events or interrupts are
missed or arrive in a different context (and those interrupts may set global
variables or set semaphores). This change of behaviour may lead to bugs that
“disappear” as soon as you try to debug them. The approach to tackle this
situation is by tracing the execution path. Tracing can take multiple forms,
from “printf-style” debugging to hardware support that records the entire ex-
ecution flow of a session for post-mortem analysis.

A tracing technique that is unique to GDB is to add a command list to a (hard-
ware) breakpoint, where the last command in the list immediately continues
execution after recording that the breakpoint was passed. This way, you can
evaluate which points in the code were visited and which were not, move the
breakpoints to closer to the area where the bug is suspected and run another
session —all without needing to edit and rebuild the code.

Requirements for Front-ends
GDB has powerful and flexible commands, but its console interface falls short
of what is needed. Code is hard to follow if you only see a single line at a
time. While you can routinely type the list command on the “(gdb)” prompt,
it is clumsy, and it distracts you from focusing on locating any flaws in your
code. A front-end that provides a full-screen user interface is therefore highly
desirable.

The front-end should not do away with the console, though. Some of the
more advanced commands of GDB are not easily represented with icons and
menu selections. This is especially true for remote debugging, and even more
so for remotely debugging embedded systems. Without the ability to set or
read the debug probe’s configuration, via the monitor command, your set-up
depends on the defaults in the probe, which may not be appropriate for the
target. Without the ability to set hardware breakpoints, you may not be able
to debug code that runs from Flash memory; and as mentioned, running from
Flash memory is the norm on small microcontrollers.

Embedded Debugging with the Black Magic Probe 11

In a misguided attempt to increase “user-friendliness,” KDbg, Nemiver and
the Eclipse IDE hide the GDB console (Eclipse has a console tab in its “debug
mode,” but it is not the GDB console). Fortunately, this still leaves several
front-ends to choose from on Linux: DDD & gdbgui work well, and GDB’s
internal TUI is adequate. The TUI is not available on Windows builds of GDB,
and DDD has not been ported to Windows. However, gdbgui runs in a browser,
there is a “Cortex Debug” extension for the Visual Studio Code editor, and two
(commercial) alter native front-ends for Microsoft Windows are WinGDB and
VisualGDB (both function as plug-ins to Microsoft’s Visual Studio). Finally, a
few GDB front-ends specifically designed for the Black Magic Probe exist. One
of these was developed along with this book, and it is covered extensively in
section The BlackMagic Debugger Front-end on page 50. For an alternative,
see Further Information on page 131 and specifically the front-end “turbo.”

12 Embedded Debugging with the Black Magic Probe

Hardware Overview
There are two versions of the native Black Magic Probe hardware in current
use. Version 2.1, the Black Magic Probe “mini,” was available from 2016 to
2022. It is a 33 × 15 mm PCB, with a micro-USB connector for linking it to a
workstation and a 2× 5-pins 1.27 mm pitch “debug” header for connection to
the target microcontroller. See section Connecting the Target on page 24 for
details on the Cortex Debug header.

Next to the two connectors, the Black Magic Probe has an on-board switch
(that you will only use to upgrade the firmware to the Black Magic Probe, see
Updating Black Magic Probe Firmware on page 110) and four LEDs that signal
power and activity status.

On the reverse site, the Black Magic Probe has a third connector, for a sec-
ondary TTL-level UART. This is a 4-pins 1.25 mm pitch “PicoBlade” connector.
The function of the four pins is annotated in the silk-screen text on the back.
A 145 mm cable with four coloured wires and a suitable PicoBlade connector
is provided with the Black Magic Probe.

Hardware version 2.3 is the current release (as of 2022) of the Black Magic
Probe, after the last batch of version 2.1 sold out. At 39 × 17 mm, it is slightly
larger than its predecessor. The USB connector has been upgraded to USB-C.
Other changes to the hardware design, such as the extra Flash memory on
the bottom side for “on-the-go” programming, may become more important

Embedded Debugging with the Black Magic Probe 13

in future releases of the firmware —but they are currently unused. The LEDs
and the on-board switch are the same as on the earlier version, and positioned
in the same positions.

Like version 2.3, there is a PicoBlade connector for a TTL-level UART.

The ctxLink probe is larger than the Black Magic Probe, at 89 × 33 mm. All
components and connectors are on the top side — the PCB uses only surface-
mount connectors, thus the bottom side is completely flush. There are three
3.2 mm mounting holes.

Like the Black Magic Probe:, the ctxLink probe has a USB port, a Cortex De-

14 Embedded Debugging with the Black Magic Probe

bug header, and a TTL UART connector (a 4-pins 1.25 mm pitch “PicoBlade”
connector). It also has four LEDs; three of them have the same functions as
on the Black Magic Probe, the fourth shows the connection mode. In addition
to the shared features, the ctxLink probe has a connector for a rechargeable
battery (a JST PH-series, 2-pin with a pitch of 2 mm) and a Wi-Fi module.
The ctxLink probe can be powered from multiple sources. It uses two jumpers,
P1 and P2, for selecting the power source (see the image above for the loca-
tions of P1 and P2). These jumpers should be appropriately set before con-
necting the ctxLink to power.
Power selection P1 (source) P2 (voltage)
USB-connection, USB-adapter,
or Li-Po battery (3.7V)
Powered from Target (5V)

Powered from Target (3.3V)

The Jeff Probe is a low-cost clone of the Black Magic Probe that is neverthe-
less mostly compatible with the original, both in hardware and software. It
has the same connectors, at roughly the same positions, and it has the same
specifications for target voltage levels.

The reason that I describe it as only “mostly” compatible, is that it does not
support TRACESWO. The current firmware release, at the time of writing,
does support the Real Time Transfer (RTT) protocol, as a possible alternative
to TRACESWO (see page 75). The Jeff Probes as being sold may contain an
older firmware (version 1.6), so in order to take advantage of RTT, you must
upgrade the firmware —see Updating Black Magic Probe Firmware on page
110.

Accessories
The Black Magic Probe has a 2 × 5-pins 1.27 mm pitch debug header for con-
nection to the target, and if the target board has the same connector, it can

Embedded Debugging with the Black Magic Probe 15

be connected with the provided ribbon cable. For the other cases, an adapter
board or “break-out” board is needed.

A common adapter board is one where that converts between the 10-pin Cor-
tex Debug header and the 20-pin JTAG header. An example of a break-out
board is pictured below; it makes the signals of the Cortex Debug available
on a single-row 7-pin header (of the ten pins of the Cortex Debug header,
three are ground and one is not-connected, so seven pins cover all signals).

Our favourite debug connector is the decal for the tag-connect cable. This
cable has a plug with six pogo-pins, plus three fixed pins that serve to align
the plug. The benefit of the tag-connect cable is that it requires less space
on the target board than for most other connectors, and that the matching
“connector” on the target board is simply a decal. For the target board, the
added cost for the programm ing & debugging connector is therefore zero.
The tag-connect lacks the TDI pin, and hence the tag-connect cable is not
suitable for JTAG scanning purposes.

The freeconnect project is an open-source design for a set of pogo-pin con-
nectors that are compatible with the tag-connect cable. See chapter Further
Information on page 131 for a link to the project.

We have found a set of needle probes an indispensable accessory for debug-
ging, especially after a mishap. Like downloading code that inadvertently

16 Embedded Debugging with the Black Magic Probe

disables the SWD port. To restore access to the target microcontroller, you
will then need to put it up in bootloader mode — as described in section De-
sign for Debugging on page 28 With a few needle probes on the test pads, or
directly on microcontroller pins, you can do so conveniently. We have good
experience with the PCBite probes by Sensepeek, again see chapter Further
Information on page 131 for a link.

The Black Magic Probe comes without an enclosure, but if you have access to
a 3D printer, it is recommended to print one. An enclosure gives electrical
insulation (the Black Magic Probe has a series of exposed test pads at the bot-
tom), as well as mechanical protection. Especially the header for the Cortex
Debug connector is somewhat fragile. A few printable designs of enclosures
are freely available, see chapter Further Information on page 131. It feels fit-
ting to print these enclosures in black, but you are of course free to choose
any colour.

design by Michael McAvoy design by Emil Fresk my design

Likewise, designs for 3D printed enclosures for the ctxLink probe are available
on Sid Price’s GitHub page. When using ctxLink with a rechargeable battery,
an enclosure is recommended, because it protects the battery as well. The

Embedded Debugging with the Black Magic Probe 17

ready-to-print STL files are for a Lithium Polymer (Li-Po) “503562”-style bat-
tery, which stands for 5.0 mm thick, 35 mm wide and 62 mm long. When using
a different battery size, you may need to adjust the design of the enclosure;
the design files for AutoDesk Fusion 360 are provided.
The Li-Po battery itself is also a useful accessory for the ctxLink probe, espe-
cially for those situations where it is cumbersome to pull a (long) cable to the
remote target. The ctxLink probe has a 2-pin JST PH-series connector for the
battery (2 mm pitch). For the polarity, see the picture at page 14. The ctxLink
probe charges the battery with a constant current of 500mA. Since charging
current of Li-Po batteries should not exceed 1C, where C is the capacity in
Ampere-hours, the deduction is that a 500mAh capacity is the minimum to be
suitable for ctxLink. For a prolonged lifetime of the battery, it is recommended
to charge at 0.5C. Therefore, a 1000mAh battery (or higher) is recommended.
Depending on the project, a galvanic isolation adapter for the USB port may
be advisable. The Black Magic Probe provides ESD-protection on the pins of
the Cortex Debug header and the UART, but these pins are also rated for an
absolute maximum voltage of 6V. If you are working on boards that carries
voltages well above that 6V limit (e.g. a LED-driver for eight white LEDs in
series may exceed 30V), there is the risk that this voltage breaks out to the
low-voltage logic of the board. A multimeter probe that slips and shorts out
two pins, may be enough to burn a chip on the target board. If you are unlucky,
it may also burn an attached debug probe, but with an isolator you will not
burn the USB port of your laptop or workstation.

18 Embedded Debugging with the Black Magic Probe

Setting up the Black Magic Probe
Details for adding the Black Magic Probe to your workstation as a USB device,
depend on the operating system that you are using, and the data link that
you use. This chapter therefore starts with three sections: Microsoft Windows
(USB set-up), Linux (USB set-up), and Wi-Fi set-up for ctxLink. You can skip the
sections not relevant to you.

Microsoft Windows (USB set-up)
On connecting the Black Magic Probe to a USB port on a workstation, four
devices are added. The principal ones are two (virtual) serial ports (COM
ports). One of these is for gdbserver and the other is the generic TTL-level
UART. The other two are vendor-specific interfaces for firmware update (via
the DFU protocol) and trace capture.

On Windows 10, no drivers are needed (a class driver is built-in and automat-
ically set up). Earlier versions of Microsoft Windows require that you install
an “INF” file that references the CDC class driver that Microsoft Windows has
already installed (“usbser.sys”). A suitable INF file can be found on the project
site for the Black Magic Probe, as well as with this book.

Alternatively, you can set up the CDC driver for the Black Magic Probe with
the free utility “Zadig” by Akeo Consulting (see also Further Information on
page 131). When using Zadig, you need to set up both interfaces 0 (“Black
Magic GDB Server”) and 2 (“Black Magic UART Port”) to “USB Serial (CDC)”.
You may need to first select List All Devices in the Options menu to see the
interfaces of the Black Magic Probe.

Once the CDC driver is configured, two COM ports are assigned to the Black
Magic Probe. You can find out which ports in the Device Manager, where they
are listed under the item “Ports (COM & LPT).” Alternatively, you can run the
BMScan utility on the command line (this is one of the utilities that comes with
this book).

Embedded Debugging with the Black Magic Probe 19

Note that in Windows 10, as we are using the built-in CDC driver, the name
for the Black Magic Probe interfaces is the generic “USB Serial Device” (see
the red arrows in the picture above).

For trace capture and for firmware update, the two generic interfaces of the
Black Magic Probe must be registered as either a WinUSB device or a libusbK
device.1 The most convenient way to do so is by running the aforementioned
“Zadig” utility (see Further Information on page 131).

You need to register both interfaces 4 (“Black Magic Firmware Upgrade”) and
5 (“Black Magic Trace Capture”) separately. Both are on USB ID 1D50/6018.

1 More on the choice between WinUSB and libusbK on the next page.

20 Embedded Debugging with the Black Magic Probe

You may need to first select List All Devices from the Options menu, to make
the Black Magic Probe interfaces appear in the drop-down list of the Zadig
utility.

For firmware update, you should also register the DFU interface (in DFU
mode, USB ID 1D50/6017) as a WinUSB or libusbK device. This interface is
hidden until the Black Magic Probe switches to DFU mode. To force the Black
Magic Probe in DFU mode, keep the push-button (next to the USB connector)
pressed while connecting it to the USB port of the workstation. The red, or-
ange and yellow LEDs will blink in a pattern as a visual indication that the
Black Magic Probe is in DFU mode. When you launch the Zadig utility at this
point, the interface will be present.

Note that the Black Magic Probe has different USB IDs (VID:PID pairs) in DFU
mode versus normal mode (“run mode”). In DFU mode, the ID is 1D50:6017;
in run mode it is 1D50:6018.

The choice between WinUSB and libusbK depends on the PC-hosted software
that you wish to use for trace capture. The firmware upgrade tool dfu-util (see
Updating Black Magic Probe Firmware on page 110) supports both WinUSB and
libusbK. The debugger front-end and trace viewer that accompany this book
also support both WinUSB and libusbK, and in this case WinUSB is preferred
(because it is pre-installed). The Windows port of the Orbuculum tool-set (see
Monitoring Trace Data on page 72), however, is based on libusb and requires
the libusbK driver.

Linux (USB set-up)
After connecting the Black Magic Probe to a USB port, two virtual serial ports
appear. One of these is for gdbserver and the other for the generic TTL‑level
UART. Since the Black Magic Probe implements the CDC class, and Linux has
drivers for CDC class devices built-in, no drivers need to be set up.

The device paths for the serial ports are /dev/ttyACM* where the “*” stands
for a sequence number. For example, if the Black Magic Probe is the only
virtual serial port connected to the workstation, the assigned device names
will be /dev/ttyACM0 and /dev/ttyACM1.

You can find out which ttyACM devices are assigned to the Black Magic Probe
by giving the dmesg command (in a console terminal) shortly after connecting
the Black Magic Probe (see also the arrows in the picture below). Alternatively,
you can run the BMScan utility from inside a terminal (BMScan is a companion
tool to this book).

Embedded Debugging with the Black Magic Probe 21

To be able to access the serial ports, a non-root user must in most cases be
included in the dialout group. To add the current user to the group, use:
sudo usermod -a -G dialout $USER

After this command, you need to log out and log back in, for the new group
assignment to be picked up. Reportedly, some distributions use the plugdev
group rather than the dialout group.

No driver needs to be installed for the firmware update and trace capture
interfaces, but if you wish to use those features as a non-root user (so without
needing sudo), a file with udev rules must be installed. For firmware update,
it may not be a burden to use sudo, as you will update the Black Magic Probe’s
firmware only occasionally, but trace capture is a valuable debugging tool for
everyday use.

When you copy the file 55-blackmagicprobe.rules (printed below) into the
directory /etc/udev/rules.d, it allows any user to access the trace capture
interface of the Black Magic Probe.
Standard mode
ACTION=="add", SUBSYSTEM=="usb_device", SYSFS{idVendor}=="1d50", SYSFS{idProduct}=="6018", MODE="0666"

ACTION=="add", SUBSYSTEM=="usb", ATTR{idVendor}=="1d50", ATTR{idProduct}=="6018", MODE="0666"

DFU mode
ACTION=="add", SUBSYSTEM=="usb_device", SYSFS{idVendor}=="1d50", SYSFS{idProduct}=="6017", MODE="0666"

ACTION=="add", SUBSYSTEM=="usb", ATTR{idVendor}=="1d50", ATTR{idProduct}=="6017", MODE="0666"

22 Embedded Debugging with the Black Magic Probe

The provided udev rules file does not configure stable device names for the
ttyACM devices for the Black Magic Probe. If so desired, add the following lines
to the rules file (55-blackmagicprobe.rules):
SUBSYSTEM=="tty", ATTRS{interface}=="Black Magic GDB Server", SYMLINK+="ttyBMPGDB"
SUBSYSTEM=="tty", ATTRS{interface}=="Black Magic UART Port", SYMLINK+="ttyBMPUart"

After adding the udev rules, you must reload the rules (or alternatively: re-
fresh the session by logging out and logging in again).
sudo udevadm control --reload-rules
sudo udevadm trigger

Wi-Fi set-up for ctxLink
When ctxLink is connected to a workstation via USB, the set-up is the same as
for the Black Magic Probe. To use the Wi-Fi interface for debugging, the first
issue to decide on is how to power the ctxLink. The options are to use a net
adapter with a USB-micro connector, a 3.7V Li-Po battery, or to power ctxLink
from the target. See page 15 for setting the jumpers for the power selection
of ctxLink.

The “mode” LED periodically performs a blink sequence, which indicates both
the Wi-Fi status and the battery status. See the picture at page 14 for the
“mode” LED and the associated button.

Pulses per sequence Status
none (LED off) Wi-Fi not active, power good
1 Battery low
2 Connected to a Wi-Fi access point
3 WPS configuration in progress
4 HTTP Provisioning in progress

The “mode” button enables you to activate either of the Wi-Fi configuration
modes, or to cancel a Wi-Fi configuration, by pressing it for a particular du-
ration: 4 seconds for WPS configuration, 6 seconds for HTTP Provisioning, 7
seconds or more to cancel either configuration mode.

To add the ctxLink to a wireless LAN via WPS (Wi-Fi Protected Set-up), first
start the WPS function at the access point (e.g. the wireless router). This is
typically done by pushing a button at the router. Then press the “mode” button
on the ctxLink for 4 seconds (more accurately: between 3 and 5 seconds). On
release of the button, the mode LED will blink in sequences of 3 pulses until
the set-up completes. Note that an access point typically shuts WPS off after
2 minutes, so you have to start WPS configuration on the ctxLink fairly quickly
after starting it on the access point.

Embedded Debugging with the Black Magic Probe 23

If WPS is not an option, the alternative is to use HTTP Provisioning. With this
method, you temporarily set up the ctxLink as an access point, after which
you connect to that access point with a laptop or smartphone. You will then
be presented with a form that allows you to enter the SSID and pass-phrase
of the Wi-Fi access point that ctxLink must connect to.

The first step is to press the “mode” button for 6 seconds (to be precise: be-
tween 5 and 7 seconds). Then, use a laptop or smartphone to connect to the
new access point with the name “ctxLink-AP.” Possibly you will be asked to
confirm that you want to log in. On the form that appears next, fill in (or
select) the network name (“SSID”) of the access point and the pass-phrase
(those are the SSID and pass-phrase of the Wi-Fi router that you want ctxLink
to connect to), and click on the “connect” button. After a short while, the
“mode” LED of the ctxLink should start blinking is sequences of two pulses,
as an indication of a successful connection.

On some systems, the form for the network name and pass-phrase does not
automatically pop up. To open it explicitly, you can tap on the ctxLink-AP link,
which gives you the screen at the left (in the picture below). In this screen,
choose the option “Manage router,” to arrive at the form, as shown at the
right. Alternatively, you can open a browser and open 192.168.1.1.

Once connected to the access point, the ctxLink acquires an IP address via
DHCP. One way to retrieve this address is to look it up in the list of the
DHCP server (typically the wireless router). The ctxLink announces itself as
ctxLink_0001 to the DHCP server. In case an access point does not show the
device names, the MAC address of the ctxLink is printed on the Wi-Fi module.
Alternatively, you may be able to use the BMScan utility to scan the network
for ctxLink devices; see Checking the Set-up on page 26 for more information.

24 Embedded Debugging with the Black Magic Probe

Connecting the Target
The Black Magic Probe has a 2× 5-pins 1.27 mm pitch IDC header. This is the
Cortex Debug header for JTAG and SWD. If your target board has the same
connector, the two can be readily connected with the provided ribbon cable.
Otherwise, you will need an adapter board or a break-out board.

Hardware version 2.3 of the Black Magic Probe allows for a variation on the
above pin-out, by way of two “jumpers.” See the chapter Unified Connector:
Debug + UART on page 127 for details.

When using a break-out board, you may get away with wiring less than the
seven distinctive pins/signals from the Cortex Debug header. Of the pins on
the debug connector, SWCLK, SWDIO and GND are essential. These must al-
ways be connected to the target.

The RESET pin is strongly recommended, especially for downloading firmware
to Flash memory.

The VREF pin should in most cases be connected as well, because the Black
Magic Probe uses the target’s voltage level at this pin to shift the level on the
signal lines to this same voltage. The alternative is to drive VREF to 3.3V from
the Black Magic Probe (see the monitor tpwr command on page 46).

Finally, the TRACESWO pin is for debug tracing and profiling. This pin is there-
fore needed if you use either of these features. The TDI line is used for JTAG
scan, not for SWD debugging. This pin is often omitted on break-out boards.

When the target board has a 20-pin JTAG header, you can also use a break-out
board and wire the pins individually. For debugging, the TDI pin is not used,
and therefore it does not need to be connected in most cases.

Embedded Debugging with the Black Magic Probe 25

Checking the Set-up
When the Black Magic Probe is connected to a USB port, the green and orange
LEDs (labelled “PWR” and “ACT” respectively) should be on. The ACT LED may
be bright or dim, depending on the firmware version and the operating sys-
tem.

If you have not checked which serial port the Black Magic Probe uses for its
gdbserver, run BMScan on the command line.
d:\Tools> bmscan

Black Magic Probe [Version: 1.8.2, Hardware Version 3, Serial: 7BB180B4]
gdbserver port: COM9
TTL UART port: COM10
SWO interface: {9A83C3B4-0B99-499E-B010-901D6C2826B8}

The above command works for a ctxLink debug probe connected to USB too.
For a ctxLink that is set up for Wi-Fi, you can scan the local network for the
debug probe with the following command:
d:\Tools> bmscan ip

ctxLink found:
IP address: 192.168.0.214

To check whether the drivers were installed correctly, launch GDB from the
command line. You should be using the GDB that was build for the archi-
tecture that matches the microcontroller (typically arm-none-eabi). On the
“(gdb)” prompt, type (where you replace “port” with the COM port for gdb-
server):
(gdb) target extended-remote port

In Microsoft Windows, when the port is above 9, the string “\\.\” must be
prefixed to the port name. So, COM port 10 is specified as “\\.\com10”. On
Linux, the device path for the port must be used, like in “/dev/ttyACM0”.

There is no need to configure the baud rate or other connection parameters;
what the operating system presents as a serial port is a USB connection run-
ning at 12 Mbits/s, irrelevant of what baud rate it is configured to.

After setting the remote port in GDB, the orange LED (“ACT”) may increase in
brightness (this depends on the firmware version of the Black Magic Probe).
This LED responds to the DTR signal set by GDB; this was a physical line on
the RS232 port, but now just a status command on a virtual interface.

The next step is to scan for the target microcontroller. There are two ways
to do this: swdp_scan for microcontrollers supporting SWD and jtag_scan for
devices supporting only JTAG.

26 Embedded Debugging with the Black Magic Probe

(gdb) monitor swdp_scan
Target voltage: 3.3V
Available Targets:
No. Att Driver
1 LPC11xx

The output shows the driver name for the microcontroller. Note that multiple
devices may be returned, for both the SWD scan (using the SW-DP protocol)
and the JTAG scan (JTAG devices may be daisy-chained).

The command also shows that the target is not yet “attached” to gdbserver
(otherwise, there would be a “*” in the “Att” column of the target list). At-
taching the target is done with the attach command.

(gdb) attach 1
Attaching to Remote target

At this point, the Black Magic Probe is attached to GDB and you can proceed
to download firmware and/or to start debugging it, which is the topic of the
next chapter starting at page 31.

Running Commands on Start-up
The above commands have to be repeated on each debugging session. On
start-up, GDB reads a file called .gdbinit and executes all commands in it.
This file is read from the “home” directory on Linux, and from the path set
in the HOME environment variable in Microsoft Windows (this environment
variable is not set by default, so you may need to create it, see also section
GDB on Microsoft Windows on page 122).

Following the examples in this chapter, a suitable .gdbinit file could be:

target extended-remote com9
monitor swdp_scan
attach 1

If the Black Magic Probe is not yet connected when starting GDB, or if the
operating system decided to assign the Black Magic Probe to a different serial
port, the above start-up code will fail. GDB aborts parsing the .gdbinit file
on the first error, so the remainder of the file is not executed either. My rec-
ommendation is, therefore, to only add user-defined commands in .gdbinit.

Embedded Debugging with the Black Magic Probe 27

define bmconnect
if $argc < 1 || $argc > 2

help bmconnect
else

target extended-remote $arg0
if $argc == 2

monitor $arg1 enable
end
monitor swdp_scan
attach 1

end
end

document bmconnect
Attach to the Black Magic Probe at the given serial port/device.

bmconnect PORT [tpwr]
Specify PORT as COMx in Microsoft Windows or as /dev/ttyACMx in Linux.
If the second parameter is set as "tpwr", the power-sense pin is driven
to 3.3V.

end

The above definition gives you a shorthand for conveniently connecting to the
Black Magic Probe with a single command.
(gdb) bmconnect com9

Other settings can be added to the .gdbinit too. If you have per-project
settings, these can be in a secondary .gdbinit file in the current directory.
GDB will load the “current directory” .gdbinit file when adding the following
command in the “home” .gdbinit file:
(gdb) set auto-load local-gdbinit

You can also load a GDB “command file” explicitly with the “source” com-
mand, as below (and you can include such statements in the .gdbinit to load
auxiliary command files):
(gdb) source ../share/orbcode/gdbtrace.init

Design for Debugging
Like almost any other debug probe, the Black Magic Probe can be used for
Flash memory programming as well as for debugging the code that runs from
Flash memory. For the development cycle, this is very convenient: you build
the code and then load it into the target and into the debugger in a single
flow.

28 Embedded Debugging with the Black Magic Probe

However, it is common for microcontrollers that several functions are shared
on each single pin. If the code redefines one of the pins for SWD to some
other function, by design or by accident, the debugging interface will stop
functioning. If the code redefines the pins quickly after a reset, the Black
Magic Probe may not have a chance to regain control of the SWD interface,
even after a reset. The result is that not only the code cannot be debugged
any more, but also that no new code can be flashed into the microcontroller.
Depending on your microcontroller, a way to circumvent this is to enable the
option connect_srst in the Black Magic Probe (see page 47 for the command
description). The Debug Access Port of the ARM Cortex is designed such that
it may stay active while the remainder of the microcontroller is in reset, so
that a debug probe can attach to it. This is precisely what the connect_srst
option does: it pulls the reset pin on the connector low while performing a
SWDP scan, as well as during the attach command. Whether or not the ARM
Cortex debug port is enabled during reset, depends on the microcontroller,
however. For example, NXP’s low-end microcontrollers with a Cortex M0(+)
core use the RESET pin to switch between JTAG and SWD (disabling SWD
while RESET is low).
As an alternative, you can often use system-specific pins to force a microcon-
troller into boot mode. The LPC series of microcontrollers from NXP have
a BOOT pin that forces the microcontroller into bootloader mode when it is
pulled low on reset (or on power cycle). The STM32 series from STMicro-
electronics have two boot pins for the same purpose —though BOOT0 must
be pulled high, rather than low. Bootloader mode is designed for Flash pro-
gramming over a serial port or USB, but the side effect is that it blocks the
firmware from running. As a result, the pins for SWD have not been redefined
and you can now start GDB and attach to the target (after which you can up-
load new firmware). The recommendation for PCBs with an LPC or STM32
microcontroller is therefore to branch out the “boot” pin(s) to a jumper or a
test pad, so that you can recover from an accidental pin redefinition.
If the pin redefinition of the SWD pins is by design, because you need these
pins for other purposes, this will thwart your ability to debug the code. If pos-
sible, arrange the design such that the SWD pins are used for a non-essential
function. Then, you can implement the firmware such that it redefines the
SWD pins only when not running under control of a debugger. While debug-
ging, you will miss the functionality that would otherwise be driven by SWD
pins, but you can debug the rest.
Two methods are available for the firmware to detect whether it is running
under a debugger. The first is to test that the low bit of the Debug Halting
Control & Status Register (DHCSR) is set. This works on a Cortex M3/M4/M7
microcontroller, however; on the Cortex M0/M0+ microcontroller architec-
ture, this register is not accessible from firmware (it is accessible from the
JTAG/SWD interface).

Embedded Debugging with the Black Magic Probe 29

if ((CoreDebug->DHCSR & 1) == 0) {
/* not running under a debugger, free to redefine pins */

}

The alternative is to have a weak pull-up on the SWCLK pin and probe it (as
a general-purpose I/O pin) on start-up. The Black Magic Probe pulls the clock
line low (provided that it senses a voltage on the VREF pin). This does require
some pin juggling, though: you first have to configure the SWCLK pin as an
“input” I/O pin (with a pull-up) to be able to read it, and depending on the
value read, either quickly change it back to SWCLK pin, or set it to its intended
configuration. Also, if the pin is connected to other circuitry that drives the
pin low, this trick won’t work.

30 Embedded Debugging with the Black Magic Probe

Debugging Code
Debugging code for embedded systems has its own challenges, in part due to
the way that microcontroller projects differ from typical desktop applications.
Some commands of GDB are skipped over in almost every book because they
are not relevant for desktop debugging. This chapter focuses on the com-
mands that are pertinent to the Black Magic Probe and ARM Cortex targets.
It is therefore more an addendum to books/manuals on debugging with GDB,
than a replacement of them.

As mentioned in The Debugging Pipeline (page 5), you will probably prefer a
front-end to do any non-trivial debugging. Below is a screen-capture of gdbgui
connected to the Black Magic Probe, and ready to debug “blinky.”

The gdbgui front-end is a fairly thin graphical layer over GDB: you have to
type most commands in the console. However, the limited abstraction from
GDB is actually an advantage. Front-ends typically aim at desktop debugging,
and so the set of commands specific to embedded code are not wrapped in

Embedded Debugging with the Black Magic Probe 31

dialogs and pop-up menus.

Yet, while we recommend the use of a front-end with GDB, the commands
and examples in this chapter use the GDB console. While a front-end may
provide a more convenient way to perform some task, each will have its own
interface for it. The GDB console is a common denominator for all GDB-based
debuggers.

Prerequisite Steps
On every launch of GDB, it has to connect to the Black Magic Probe, scan for
the attached target and attach to it. Unless you are using the BMDebug front-
end that handles these steps automatically, they have to be given through the
console.
(gdb) target extended-remote COM9
Remote debugging using COM9
(gdb) monitor swdp_scan
Target voltage: 3.3V
Available Targets:
No. Att Driver
1 LPC11xx

(gdb) attach 1
Attaching to Remote target
0x0000033a in ?? ()

These commands can be wrapped in a user-defined command in a .gdbinit
file, see Running Commands on Start-up on page 27. In that case, you would
type only a single command:
(gdb) bmconnect COM9
Target voltage: 3.3V
Available Targets:
No. Att Driver
1 LPC11xx

0x0000033a in ?? ()

Loading a File and Downloading it to the Target
The first step in running code in a debugger, is to generate debug symbols
while building it. The GNU GCC compiler (and linker) use the command line
option -g for that purpose. The default format for the debug symbols is typi-
cally DWARF, and this would also be the preferred format.

You can specify the target executable file on the command line when launch-
ing GDB, but alternatively, you set it with the file command. The filename

32 Embedded Debugging with the Black Magic Probe

may be a relative or full path, with a / as the directory separator (this is of
notice to users of Microsoft Windows, where directories are usually separated
with a “\”).
(gdb) file blinky.elf
A program is being debugged already.
Are you sure you want to change the file? (y or n) y
Reading symbols from blinky.elf...done.
(gdb) load
Loading section .text, size 0x7da lma 0x0
Start address 0xd8, load size 2008
Transfer rate: 6 KB/sec, 669 bytes/write.

Note that the GDB load command downloads only the executable code to the
target. The ELF file contains debug symbols, which makes the executable file
much larger than when the code is compiled without debugging information.
However, the size of the code that is downloaded to the target remains the
same; the debug symbols are not transferred.

Flash Memory Remap
For the LPC microcontroller series, an additional step is recommended be-
fore the load command. NXP designed the microcontrollers such that the
bootloader always runs on reset (or power-up). The bootloader then samples
the boot pin, verifies whether there is valid code in the first Flash sector, and
jumps to it if it checks out. The conflict is: the ARM Cortex starts running at
the reset vector stored at address 0, which must initially point to ROM (where
the bootloader resides) and then to Flash memory (where the user code sits).
The LPC microcontrollers have the feature to remap address range 0. . .511
to either Flash, RAM or ROM via either the SYSMEMREMAP or the MEMMAP reg-
ister. According to the NXP manuals, after a reset, the register is initialized
such that address 0 maps to Flash memory. However, that is not what hap-
pens: the SYSMEMREMAP (or MEMMAP) register is initially 0 (remap to bootloader
ROM) and the bootloader then modifies it to map to Flash before jumping to
the user code in Flash. However, when the microcontroller is halted by the
debug probe, SYSMEMREMAP is still 0. Then, if you download new code in the
microcontroller, the bottom 512 bytes will be sent to ROM, and be lost.

The fix is to force mapping the SYSMEMREMAP register to the appropriate value
from GDB (as is apparent, SYSMEMREMAP is a memory-mapped register). The
example below is for the LPC8xx, LPC11xx, LPC12xx and LPC13xx series.
set mem inaccessible-by-default off
set {int}0x40048000 = 2

For convenience, the above can be wrapped in a user-defined command in the
.gdbinit file, see Running Commands on Start-up on page 27:

Embedded Debugging with the Black Magic Probe 33

define mmap-flash
set mem inaccessible-by-default off
set {int}0x40048000 = 2

end

document mmap-flash
Set the SYSMEMREMAP register for NXP LPC devices to map address 0 to
Flash.

end

You would then give the command mmap-flash before using the load com-
mand. The address of the SYSMEMREMAP register (and the value to set it to) is
different in other series in the LPC microcontroller range.
NXP series Register Address Flash map
LPC800, LPC1100, LPC11U00, LPC1200, SYSCON SYSMEMREMAP 0x40048000 2
LPC1300
LPC1500 SYSCON SYSMEMREMAP 0x40074000 2
LPC1700 SCB MEMMAP 0x400FC040 1
LPC2100, LPC2200, LPC2300, LPC2400 SCB MEMMAP 0xE01FC040 1
LPC4300 M4MEMMAP 0x40043100 0

The “mmap-flash” snippet in .gdbinit therefore needs to be adapted for the
particular microcontroller as well. A more complete version of the mmap-flash
user-defined command is in the .gdbinit file that comes with this book.

Reset Code Protection
On the STM32Fxx family of microcontrollers, the load command may give the
following error:
(gdb) load
Error erasing flash with vFlashErase packet

This implies that readout protection” (RDP) is set in the option bytes. No new
code can up downloaded unless the option bytes are erased first —which in
turn wipes the entire Flash memory. To check whether code read protection
is set, use the monitor command.
(gdb) monitor option
usage: monitor option erase
usage: monitor option <addr> <value>
0x1FFFF800: 0x5aa5
0x1FFFF802: 0x00ff
0x1FFFF804: 0x00ff
0x1FFFF806: 0x00ff
0x1FFFF808: 0x00ff
0x1FFFF80A: 0x00ff
0x1FFFF80C: 0x00ff
0x1FFFF80E: 0x00ff

34 Embedded Debugging with the Black Magic Probe

If the first option word is anything other than 0x5aa5, the code is read pro-
tected. As a side note, option bytes are written in pairs: value and comple-
ment. The option is only valid if the complement matches. For unprotected
code, the value for the option is 0x55, and its complement is 0xaa.

If the value is in the first option word is 0x33cc, RDP Level 2 is in effect. RDP
Level 2 cannot be undone. Any other value (so neither 0x55aa, nor 0x33cc)
indicates RDP Level 1.1 RDP Level 1 can be reverted to Level 0 (i.e. “unpro-
tected”) by erasing the option bytes. As stated, the side effect of clearing
RDP Level 1 is that the Flash memory is fully erased (which is, of course, by
intent).

To erase the option bytes, again use the monitor command, but now with the
“erase” option.
(gdb) monitor option erase
0x1FFFF800: 0x0000
0x1FFFF802: 0x0000
0x1FFFF804: 0x0000
0x1FFFF806: 0x0000
0x1FFFF808: 0x0000
0x1FFFF80A: 0x0000
0x1FFFF80C: 0x0000
0x1FFFF80E: 0x0000

After erasing the option bytes, the microcontroller must be power-cycled to
reload them (the output of the option erase command does not reflect the
true values of the option bytes; after reset, you will see that the first option
word is actually set to 0x5aa5 instead of 0x0000). Note that GDB will lose the
connection to the target on a power-cycle, so you must rescan and re-attach
to the target again.

To set code protection on a STM32Fxx microcontroller, by the way, use the
command below, followed by a power-cycle.
(gdb) monitor option 0x1ffff800 0x00ff

When code protection is enabled on the LPC microcontroller series, Flash
memory must also be fully erased before new firmware can be downloaded.
These microcontrollers do not use option bytes, however. Instead, you must
erase the Flash memory either by a GDB or monitor command, or by using a
tool that talks directly to the Black Magic Probe. On an up-to-date release of
GDB, you can give the command:
(gdb) flash-erase

1 However, RDP Level 2 disables the SW-DP port, so you will not be able to list the option
bytes.

Embedded Debugging with the Black Magic Probe 35

See also Using the BlackMagic Flash Programmer on page 104 as an alternative
tool for downloading firmware via the Black Magic Probe. The BMFlash utility
has an option to erase the entire Flash memory.

That said, code protection on the LPC series disables the SWD interface after
a reset. After that, it is no longer possible to remove code protection using
the Black Magic Probe. Instead, your options are to erase Flash memory either
via the serial bootloader (ISP), or from within your firmware (that is, you’ve
added a piece of self-destruct code to the firmware, which is triggered by a
special command or special status on power-up).

If you accidentally download firmware with code protection set onto an LPC
microcontroller, and you notice this before resetting (or power cycling) it, you
can still erase all Flash memory with a GDB command.

Verify Firmware Integrity
To verify that the code in the microcontroller is the same as the code loaded
in GDB, you can use the compare-sections command. This command also lets
you verify that downloading code was successful.
(gdb) compare-sections
Section .text, range 0x0 -- 0x7d8: matched.

There is a caveat with the LPC series of microcontrollers from NXP: these mi-
crocontrollers require a checksum in the vector table at the start of the Flash
code. The checksum can only be calculated at or after the link stage, but the
GNU linker is oblivious of this requirement. Instead, firmware programmers
calculate and set the checksum while downloading, and the Black Magic Probe
is no exception. The upshot is that compare-sections will now always return
a mismatch on the first section, since its contents were changed on the flight
while downloading it.

To fix compare-sections, the checksum must be set in the vector table in the
ELF file after the link phase. The Black Magic Probe will calculate it again
during downloads, despite that it is already correctly set —but that is harm-
less. After downloading, the code in the microcontroller will be identical to
the code in the ELF file.
elf-postlink lpc11xxx blinky.elf

The program elf-postlink is a one of the utilities that come with this book.

Starting to Run Code
The run command starts to run the loaded code from the beginning. If you
have not set any breakpoints, the code runs until it is interrupted through

36 Embedded Debugging with the Black Magic Probe

Ctrl+C. The start command sets a temporary breakpoint at function main and
then runs; the program will therefore stop at main.
(gdb) start
The program being debugged has been started already.
Start it from the beginning? (y or n) y

Temporary breakpoint 1 at 0x348: file blinky.c, line 33.
Starting program: c:\Source\blinky\blinky.elf
Note: automatically using hardware breakpoints for read-only addresses.

Temporary breakpoint 1, main () at blinky.c:33
33 {

Note the mention of the automatic use of hardware breakpoints. With the
help of the Black Magic Probe, GDB indeed inserts a hardware breakpoint on
the break command.

Getting help and information
Oft overlooked, but the help and info commands are among the most useful
for a command-line tool like GDB.
help Show a list of topics you can get help on.
help topic Show help on a topic, usually including a list of relevant

commands.
For the list of topics, type “help” without any parameter.

help command Show the syntax and parameters of the command, plus a
brief description of its purpose or function.
For a list of commands, type “help all”.

info Show a long list of topics you can get information about.
info topic Show the information GDB has on the topic. Topics can range

from variables and arguments, stack, targets and the sources
that built it, breakpoints, watchpoints, etc.

The difference between the help and info commands is that help gives infor-
mation on how to do things in GDB, and info informs you about the status of
GDB or the program loaded into it. For example, “help break” gives you a
page that describes how to set a breakpoint, whereas “info break” lists the
breakpoints that are set, plus the properties of each of these.

Listing Source Code
The commands listed below are a subset of the full GDB command & param-
eter set for listing the source code of a target. These are the most common
commands.

Embedded Debugging with the Black Magic Probe 37

list line Show the source code around the given line number in the
current source file.

list file:line Show the source code in the file with the name in the first
parameter, and around the line number in the second
parameter.

list function Show the source code starting at the given function.
list Show the next lines (below the current position). You can

optionally add a + as a parameter (“list +”).
list - Show the preceding lines (above the current position).
info sources List the names of the source files for the target executable.
info line *address Print the line number and source file associated with the

address. The address parameter must start with “0x” if it is in
hexadecimal.

Downloading code into the microcontroller
These commands were covered in section Loading a File and Downloading it
to the Target on page 32.

file path Set the path of the ELF file to debug (if it was not already
given on the GDB command line).

load Download the code sections of the ELF file into the micro-
load filename controller. In the common case, no parameter is given with

the load command, in which case the file set with the file
command is downloaded. However, you may specify the file
to download explicitly.

compare-sections Check whether the code in the microcontroller matches the
ELF file being debugged; see section Verify Firmware Integrity
on page 36.

flash-erase Erases the Flash memory regions on the target.

Stepping and Running
These are the basic commands needed for debugging. Several of these com-
mands were already informally introduced in earlier sections.

start Start or re-start the program and break at function main. If
no function “main” exists, it is the same as the run command.

run Start or re-start the program (from the beginning).

38 Embedded Debugging with the Black Magic Probe

continue Continue running (from the current execution point).
(can be abbreviated to c) A count may follow the command, but it is only relevant if

code stopped due to a breakpoint. If present, the breakpoint
is ignored the next “count” times it is hit. This is particularly
useful in when the breakpoint is inside a loop: the command
“continue 10” will run 10 more iterations before stopping at
the breakpoint again.

step Step a single source line, step into functions if the current
(can be abbreviated to s) execution point is at line with a function call.

A count may follow the command. If present, the command
repeats the step “count” times.

next Step a single source line, step over functions (if there is a
(can be abbreviated to n) function call at the current execution point).

A count may follow the command. If present, the command
repeats the step “count” times.

until Rn until a source line is reached that is below the current
(can be abbreviated to u) line (this command is intended for stepping out of loops).

Alternatively, you can set a line number after the until
command, and then it runs until that line is reached.

finish Continues execution until it steps out of the current function,
(can be abbreviated to fin) then stops at the location from where the function was called.

The step command will not step into functions without symbolic information,
such as a function from the standard library. Instead, step will step over the
function call, and behave identical as next in this case. You can also instruct
GDB to always step over particular functions, with the skip command (it skips
stepping into the function). The purpose of skip is easiest explained with an
example:
▶ transmit_data(array, setup_connection());

When a function has a call to another function in its parameter list, the step
command will step into the nested function first. In this example, it will
step into setup_connection() and only go into transmit_data() afterwards.
Suppose we want to step into transmit_data(), but that needing to step
through setup_connection() first is a chore. This is where you want to mark
setup_connection() to be skipped.
The skip command is very flexible; the two most common variants are below.
skip function name Skip the stated function (or skip the current function if no

name is given).
skip file name Skip all functions in the stated file (or skip all functions in the

current file, if no name is given).

When stepping through optimized code, the current line may jump back and
forth on occasion, because the compiler has re-arranged the generated ma-
chine code. See section Debugging Optimized Code on page 59 for details.

Embedded Debugging with the Black Magic Probe 39

Altering execution flow
In case that you need to break out of an endless loop, or a case where you
know that continuing running the remainder of the function will do no good,
you can alter the execution flow.

jump line Start running at the given location. You can use this command
jump file:line to break out of an endless loop, or to jump back a few lines to

re-examine the control flow.
return Skips to the return address of the current function (without
return expression executing the code between the current location and the

return point). The program stays in stopped state.

In brief: jump is like continue, but starting from a different location; and re-
turn is like finish, but without executing the code. See also to set command
on page 43, because you can often also change control flow (or exit a loop) by
changing a variable.

Breakpoints and watchpoints
When creating a breakpoint or watchpoint, it gets assigned an ID. This is
simply a unique number to identify the breakpoint or watchpoint. Several of
the commands listed below take the breakpoint ID as a parameter.

break line Set a breakpoint at the line number in the current source file.
(can be abbreviated to b)
break file:line Set a breakpoint at the line number in the specified source file.
break function Set a breakpoint at the start of the named function.
tbreak ... Sets a one-time breakpoint, which auto-deletes itself as soon

as it is reached. The tbreak command takes the same
parameter options as the break command.

watch expr Set a watchpoint, which causes a break as soon as the
expression changes. In practice, the expression is typically
the name of a variable, so that GDB halts execution of the
program as soon as the variable changes.

rwatch expr A watchpoint that triggers when the variable (or memory
location that the expression points to) is read. This requires
hardware breakpoints.

awatch expr A watchpoint that triggers on access —either read or write.
It requires hardware breakpoints.

info break Show the list of breakpoints and watchpoints, together with
the sequential index numbers (i.e. the breakpoint “IDs”) that
each breakpoint got assigned.

40 Embedded Debugging with the Black Magic Probe

delete When given without parameters, this command deletes all
delete id ... breakpoints.

Otherwise, if one or more breakpoint IDs follow the command
(separated by spaces), the command deletes the breakpoints
with those IDs.

clear Without parameters, this command deletes the breakpoint
that is at the current code execution point. The primary use is
to delete the breakpoint that was just reached.

clear line Delete a breakpoint on the given line or function. It allows the
clear file:line same options as the break command.
clear function
disable id ... Disables the breakpoints with the given IDs. There may be

one or more IDs on the command list (separated by spaces).
enable id ... Enables the breakpoints with the given IDs. There may be one

or more IDs on the command list (separated by spaces).
You may also use enable once to enable the breakpoints, but
disable them when they are reached.

cond id expr Attaches a condition to the breakpoint with the given ID. The
condition is what you would write between the parentheses of
an “if” statement in the C language.
For example:

cond 3 count == 5
causes breakpoint 3 to only halt execution when variable
count equals 5 (assuming, of course, that variable count is in
scope).
When the expression is absent on this command, the
condition is removed from the breakpoint (but the breakpoint
stays valid).

command id Sets a command list on the given breakpoint. These
... commands are executed when the breakpoint is reached. It
end can be used, for example, to automatically print out the stack

trace on arriving at the breakpoint.
See section Tracing with Command List on Breakpoints on
page 77.

For embedded development, enabling and disabling breakpoints (and watch-
points) is all the more useful, because hardware breakpoints & watchpoints
are a scarce resource. Most Cortex-M microcontrollers offer 6 hardware
breakpoints and 2 hardware watchpoints. What counts for the Black Magic
Probe, is not the number of breakpoints that have been set, but the number
that is active. When you need more breakpoints than the microcontroller of-
fers, you keep them defined, but disable the ones that are not immediately
relevant for the next step in debugging the code.
For a hardware watchpoint, the data type of the expression cannot be wider

Embedded Debugging with the Black Magic Probe 41

than the word size of the microcontroller. For example, the word size is 32-
bit on an ARM Cortex-M microcontroller, and the expression to watch can
therefore be up to four bytes wide.

Setting a breakpoint plus a condition on a breakpoint may be combined in a
single step. To do so, put the keyword “if” followed by condition expression
at the end of the break command. For example:

break blinky.c:168 if count == 5

The Cortex-M microcontrollers can also break on specific exceptions or inter-
rupts. An exception trap is set with the monitor vector_catch command, see
page 49. When the exception is caught, the microcontroller will halt on the
first instruction of the exception/interrupt handler.

Examining Variables and Memory
In addition to the commands below, most front-ends show a variable’s value
when hovering the mouse cursor over it. Front-ends typically also allow set-
ting “variable watches” (which is the equivalent to the display command),
and they may also automatically list all local variables and their values (the
equivalent of the info locals command). The gdbgui front-end even allows
you to add a graph for numeric variables, to give you a visualization of the
value of the variable over time.
print var Show the contents of the variable. GDB can parse C-language
print /fmt various expressions to show array elements or dereferenced pointers,
print var@count like in:
(can be abbreviated to p) print var[6] show the value of an array element

print *ptr dereference the pointer and show the
value

The format to print the variable in (e.g. decimal, hexadecimal,
or other) is a single letter; see the list on page 43.
The “var@count” syntax interprets var as the start of an array
and prints count elements.

info args Show the names and values of the function arguments.
info locals Show the names and values of all local variables.
ptype var Show the type information of the variable.
display var Watch the variable. Show the variable’s value each time
display /fmt var that the execution is halted.
(can be abbreviated to disp) The format to print the variable in (e.g. decimal, hexadecimal,

or other) is a single letter; see the list on page 43.
undisplay num Remove the watch with the given sequence number.
(can be abbreviated to undisp)

42 Embedded Debugging with the Black Magic Probe

x address Display the memory at the given address. The options start
x /options address with a slash, followed by zero or more digits, and then

followed by one or two letters. The digits are the count of
elements, the first letter is the format and the second letter
the size of each element in bytes.

set var=value Set the variable to the value, or store the value at the
set addr=value address. You can use C-style type-casts on the address to

specify the size of the memory field.

The GDB print command records each value that it prints in its “value his-
tory,” and assigns it a label. The first label is $1 and it is incremented on each
successive print command. You can use these labels in expressions.
While the print command is typically used to show variables, it is able to
evaluate C-style expressions. As such, you can use the GDB print command
as a built-in calculator.
(gdb) p sampleDelay
$1 = 50
(gdb) p $1 / (double)ticksPerSecond
$2 = 0.050000000000000003

The x command displays the memory at any given address. The address can
be an expression that evaluates to an address —which includes variables. If no
options are given, GDB uses its defaults, and at start-up the default display
format is: a single 32-bit value displayed in hexadecimal. The number of
elements (bytes or words) to display can be set after a slash, for example “x
/4 0x1234” displays four elements starting at the given address. This element
count then also becomes the new default for the x command.
The print, display and x commands each allow a format specification behind
the slash (or, for the x command, behind the count). The format code consists
of a single letter. In case of the x command, a second letter may be added to
indicate the size of each item.

o octal
x hexadecimal
d decimal
u unsigned decimal
t binary
f floating point
a address
c character
s string (zero-terminated)
i instruction
b size modifier: byte (8-bit value)
h size modifier: halfword (16-bit value)
w size modifier: word (32-bit value)
g size modifier: “giant” word (64-bit value)

Embedded Debugging with the Black Magic Probe 43

As is the case for the count of elements in the x command, the given display
format becomes the default for any subsequent x command. Unless the count
of elements is specified together with the display format, the element count
is reset to 1.

Peripheral registers are memory-mapped in the ARM architecture, but by de-
fault, GDB won’t show data outside the range for program and data memory.
That is, the address of a peripheral register is considered an invalid memory
address. To view peripheral registers, first issue the following command:

set mem inaccessible-by-default off

After this command, GDB considers any address outside the memory map
as RAM. The BMDebug front-end (see page 50) automatically runs this com-
mand, and other GDB front-ends may do so too. Alternatively, you can include
the command in .gdbinit —the .gdbinit file was covered in section Running
Commands on Start-up on page 27.

The Call Stack
A stack frame stores the local variables, arguments and the return address
for each sub-routine (or function). The scope of local variables and arguments
is restricted to the sub-routine that they are declared in.2 Stack frames form
a list, that a debugger can walk up and down. Moving up the stack frame
allows you to look at the local variables in the routine that the current routine
(that contains the execution point) was called from.

backtrace num Show a list with the call-stack that lead to the current
(can be abbreviated to bt) execution point. The call stack is optionally limited to the

given number of levels.
up Move to the frame one higher in the call-stack, which is the

frame that contains the call to the current frame. You can go
up multiple levels by adding the count, as a parameter.

down Move back to a lower frame. You can go down multiple levels
by adding the count, as a parameter.

frame idx Move to the given frame index (the backtrace command
(can be abbreviated to f) prints these index numbers).

The frame command without parameter prints the active
frame index.

2 This is a simplification —more accurately, local variables have a scope that runs from their
declaration to the end of the compound block that the declaration appears in.

44 Embedded Debugging with the Black Magic Probe

GDB numbers the stack frames sequentially, starting from zero for the sub-
routine that the current execution point is in. With the command “frame 0”,
you will return to the frame that corresponds with the execution point.

After changing to a different stack frame (with the up, down or frame com-
mands), commands like info locals will reference to the local variables of
that frame. This may help you in determining what conditions caused the call
to the function that contains the execution point.

Inspecting Machine Code
GDB is primarily used as a source-level debugger, but at times, you may want
to look at what happens at the CPU level.
disassemble When used without start & end arguments, it shows the
disassemble start,end assembly code of the function that the execution point is in.
disassemble /s The alternative is to specify an address range (start, end) to
(can be abbreviated to disas) disassemble.

The /s option mixes the assembly code with the source code,
which often makes it easier to follow the assembly code.

set disassemble-next-line on When GDB halts execution, it shows the source code line
set disassemble-next-line of that it stopped on (if that source code line is available. When

the option disassemble-next-line is switched on, GDB will in
addition show the disassembly for the instruction at the
execution point.

stepi Like the step command, see page 39, but stepping a single
instruction (instead of a source line).

nexti Like the next command, see page 39, but stepping a single
instruction (instead of a source line).

info registers Print the names and values of the registers of the
microcontroller.

GDB treats registers as special variables. You can refer to a register (print its
value, assign a new value to it, . . .), by prefixing its name with a $. In other
words, you can add a watch on register r0 by giving the command:
(gdb) display $r0

Debug Probe Commands
GDB has a pass-through command to configure or query a gdbserver imple-
mentation: monitor (monitor can be abbreviated to mon). Whatever follows
the keyword monitor is passed to the gdbserver, in our case the embedded
gdbserver in the Black Magic Probe.

Embedded Debugging with the Black Magic Probe 45

The supported monitor-commands are listed below —divided into several cat-
egories. Some of these commands are only available on particular micro-
controller series; and the applicable microcontroller series is noted in those
cases. Likewise, if a command is only available in a particular firmware ver-
sion, this is also noted on the command.

Information and status
monitor help Show a summary of the commands that the debug probe

supports (basically this list, but restricted to commands
relevant to the detected target).

monitor version Show the current version of the firmware and the hardware.
monitor serial Show the serial number of the probe. Jeff Probe,

Show the serial number of the target. EFM32, Gecko, SAMD
monitor morse When the Black Magic Probe encounters an error that it

cannot handle otherwise, it will start to blink the red LED
(labelled “err”) in a Morse code pattern. In case your Morse
code decoding skill is a little rusty, you can instead use this
morse command to return the error message in plain text on
the GDB console. But in fact, the only such error message is
“target lost.”

Target and protocol configuration
monitor tpwr enable Enables or disables driving the VCC pin on the 2×5 pin
monitor tpwr disable header to 3.3V. See page 24 for the pin-out of the connector.

When the Black Magic Probe drives the VCC pin, it can power
the target (maximum current: 100mA).
The VCC pin must always be driven, either by the target or by
the Black Magic Probe, because the voltage at this pin is also
used by level shifters on the logic pins on the connector. The
default is that the VCC pin must be driven by the target.
A special case is to not wire the VCC pin between the Black
Magic Probe and the target. The VCC pin must now also be
driven by the Black Magic Probe, and the level shifters are
therefore set to 3.3V TTL levels.

monitor hard srst firmware 1.6. . . 1.8
monitor reset firmware 1.9

Resets the target by briefly pulling the RESET pin low on the
2×5 pin header (see page 24 for the connector).
This command was renamed from hard srst to reset in
firmware version 1.9.

monitor tdi low reset Pulls the TDI pin low, then does a RESET. firmware 1.9

46 Embedded Debugging with the Black Magic Probe

monitor frequency value Sets maximum SWCLK frequency. firmware 1.8
The value is in Hz, but may use a “k” or “M” suffix, to multiply
the value by one thousand or one million respectively; for
example, 1M stands for 1 MHz. A lower frequency for the
SWD protocol may be needed depending on the target
microcontroller, or on the wiring between the debug probe
and the target.
When no parameter is given, the command returns the active
frequency (however, in firmware 1.8, it is returned in
hexadecimal).

Target scanning
monitor jtag scan Scan the devices on the JTAG chain.
monitor swdp scan Scan for Serial Wire Debug devices (using the SW-DP

protocol). The command prints the I/O voltage and the list of
targets.
See also the tpwr command (below) for the I/O voltage and
the targets command for the device list.

monitor auto scan Scan either JTAG or SWD protocols firmware 1.8
Performs a jtag scan first, followed by an swdp scan if the
JTAG scan does not detect devices.

monitor targets Show the detected targets. This is the same list as the one
returned by the jtag scan and swdp scan commands. For each
detected microcontroller, it displays the driver (the driver is
often specific to a microcontroller family).

monitor connect srst Enables or disables the option to keep the target
microcontroller in reset while scanning and attaching to it.
See the discussion at page 28.

monitor halt timeout delay Set time to wait for device to halt. ARM Cortex-M
The time to wait for the Cortex-M core to halt, so that the
debug probe can attach to it. This value is in milliseconds.
The default is 2000 ms.

SWO (trace capture)
monitor traceswo Enable the SWO capture pin to for trace capture. The rate
monitor traceswo rate parameter is the bitrate of the SWO trace protocol. It is used

only for asynchronous encoding and on firmware versions 1.7
and later it defaults to 115.2 kbps.
Note that the native Black Magic Probe only supports
Manchester encoding. The ctxLink probe supports only
asynchronous encoding.
For capturing SWO output using the BlackMagic Debugger
front-end, see the Trace Views on page 55.

Embedded Debugging with the Black Magic Probe 47

monitor Decode SWO output in the Black Magic Probe. firmware 1.7
traceswo decode channels The trace output is transmitted over the virtual UART, so that

it can be viewed on a serial terminal.
The SWO channels to decode can be appended as a
space-separated number list to the command. If absent,
all channels are active.

Note that clones of the Black Magic Probe, and especially those in the low
price range, may not support SWO tracing.

Real Time Transfer
monitor rtt Enable RTT and scans memory on the target for channel data
monitor rtt enable structures.
monitor rtt disable Disable RTT.
monitor rtt status Reports the status of RTT and the channels that are active.

The returned message shows an on/off status for the RTT
function, plus a yes/no status for whether the “control blocks”
for all enabled channels were found. Notably, if the status
shows “rtt: on found: no”, RTT is enabled (and my be
partially functioning) but not all channels have yet been
discovered.

monitor rtt poll max min err The debug probe polls the queues of the RTT queues regularly.
This command lets you set the maximum and minimum
interval times (in milliseconds), and the maximum number of
errors before the RTT function disables itself.

monitor rtt channel num ... Enables the channels given by the numbers (and disables all
channels not in the list). The numbers must be between 0
and 15.
By default, output channels 0 & 1 and input channel 0 are
enabled (mimicking stdout, stderr & stdin. If no channel
numbers follow this command, it resets these defaults.

monitor rtt ram start end Sets the region of memory to scan on the target for the
RTT control blocks to the start and end addresses. The values
must use hexadecimal format.
The default is to scan the full RAM range of the target
microcontroller.

monitor rtt ident name Sets the signature of the control block to search for. RTT has
a default signature (“SEGGER RTT”), but this can be overruled
by the target firmware. The debug probe requires the
signature to discover the channels. If no name follows the
command, the default signature is restored.
Underscore characters in the name are replaced by spaces.

monitor rtt cblock Reports the details of the discovered channels (“control
blocks”).

48 Embedded Debugging with the Black Magic Probe

Support for Real Time Transfer is an optional feature on the Black Magic Probe
and generally requires firmware release 1.8 (or higher). See section Real Time
Transfer (RTT) on page 75 for more information on the protocol.

Miscellaneous (MCU-specific)
monitor heapinfo hb hl sb sl Set semihosting heapinfo values. ARM Cortex-M

Four values in hexadecimal format must follow this command,
for the values of the heap base, the heap limit, the stack base
and the stack limit respectively.
The startup code in the newlib C library (and possibly others)
uses a semihosting call to get the heap and stack space, if
running under a debugger. This command lets you override
the defaults for the heap and the stack.

monitor Break on specific exceptions. ARM Cortex-M
vector catch enable vec The first parameter must be enable or disable.

monitor The second parameter must be the exception for which the
vector catch disable vec “catch” must be enabled or disabled. It is one of:

hard Hard fault
int Interrupt/exception service errors (an assortment

of exceptions that don’t fall in one of the other
categories)

bus Bus fault
stat Fault state error
chk Divide by zero, misaligned memory access, etc.
nocp Missing coprocessor (on coprocessor instruction)
mm Memory Manager fault
reset Core reset

Cortex-M0 and M0+ microcontrollers only support “reset” and
“hard” fault. A hard reset cannot be caught, though.

monitor erase mass Erase entire flash memory. LPC17xx, LPC4300 Cortex-M4,
EFM32 Gecko, nRF51xxx series,
SAMD, STM32Fxx, STM32L4xx

monitor erase bank1 Erase entire flash memory in bank 1. STM32L4xx
monitor erase bank2 Erase entire flash memory in bank 2. STM32L4xx
monitor eeprom Set values in EEPROM (non-volatile memory). STM32L0x,

The first parameter is one of: STM32L1x
byte 8-bit value
halfword 16-bit value
word 32-bit value

The second parameter is the address in the EEPROM.
The third parameter is the value (with the size as specified in
the first parameter).

monitor mkboot bank Make flash bank bootable. LPC4300 Cortex-M4
The parameter is the bank number, 0 or 1.

Embedded Debugging with the Black Magic Probe 49

monitor unsafe Allow programming the security byte. Kinetis
The parameter must be enable or disable.

monitor read Read target device parameters. nRF51xxx series
The parameter is one of:

help Show brief help on the command
hwid The hardware identification number
fwid The pre-loaded firmware ID
deviceid The unique device ID
deviceaddr The device address

monitor lock flash Lock Flash memory against accidental change. SAMD
monitor unlock flash Unlock Flash memory. SAMD
monitor user row Print the user row from Flash. SAMD
monitor mbist Run the “Memory Built-In Self Test” (MBIST). SAMD
monitor option erase Set option bytes. STM32Fxx, STM32L0x,
monitor option address value STM32L1x, STM32L4xx

The first syntax is “option erase” to erase the option bytes.
If read protection set in option bytes, erasing it implicitly
erases the entire Flash memory.
The second syntax is “option address value” which stores a
value at the given address.

monitor gpnvm get Get value of the GPNVM register. SAM3N, SAM3S,
SAM3U, SAM3X, SAM4S

monitor gpnvm set bit val Set bit in the GPNVM register. SAM3N, SAM3S,
SAM3U, SAM3X, SAM4S

The first parameter is the bit number.
The second parameter is the value for the bit (0 or 1).

The BlackMagic Debugger Front-end
The BMDebug utility is a front-end for GDB that is designed for the Black Magic
Probe and ctxLink. It handles the Prerequisite Steps described on page 32 on
start-up:
⋄ automatically locates the debug probe and attaches to it;
⋄ powers up the target, if this option is set in the configuration;
⋄ verifies whether the code in the microcontroller matches the ELF file loaded

in GDB, and downloads the ELF it on a mismatch (this is also an option in
the cofiguration);

⋄ verifies the date & time stamps of the source files against that of the ELF
file, and issues a warning if the ELF file is out of date.

Apart from serving as a graphical front-end, BMDebug integrates a basic se-
rial monitor and support for SWO tracing, so that it can combine traditional
debugging with run-time tracing.

50 Embedded Debugging with the Black Magic Probe

Starting up
After loading an ELF file, BMDebug stops at function main in that code. You
may set an alternative function as the entry point of the executable. If the
entry point function (typically “main”) cannot be found, BMDebug keeps the
microcontroller in halted state, so that you can set a breakpoint at some code
of interest before giving the run command (or pressing the “cont” button).
Unlike the BMFlash utility (see page 104), the BMDebug front-end is not able
to calculate the header checksum for the LPC microcontroller family before
uploading it. This is because BMDebug is based on GDB (it is a “front-end”),
whereas BMFlash is independent of GDB. As a consequence, GDB (and thereby
BMDebug) will always see a CRC mismatch between the (LPC-specific) ELF
file loaded in the debugger and the one downloaded in the target, and re-
download it at every run. To avoid this, include a call to elf-postlink on the
ELF file as part of the build process (e.g. the Makefile). See the discussion of
the elf-postlink utility in section Verify Firmware Integrity (page 36 for more
information on the checksum for LPC microcontrollers. The other option is to
disable automatic download of the ELF file in BMDebug (option “Download to
target onmismatch” in the “Configuration” section in the sidebar), and instead
use the load command to explicitly download new code. See also section Edit-
Compile-Debug Cycle on page 58.

Embedded Debugging with the Black Magic Probe 51

GDB Console and Command Line
BMDebug is a “thin” front end: it has controls and shortcuts for the basic
operations of a debugger, but more advanced commands (like adding a con-
dition to a breakpoint) need to be typed as a command. The output of those
commands typically appears in the GDB console.

BMDebug has the GDB console and the command line (for input to GDB) in
the bottom-left section. The GDB console shows the output of GDB. Some
messages from GDB are filtered out by default. You can set the option “Show
all GDB messages” in the “Configuration” section in the sidebar to see all
output.

The command line keeps a history of commands that are typed in. The Ctrl+↑
and Ctrl+↓ key combinations scroll through earlier commands on the com-
mand line, and Ctrl+R key pair searches in the command history for matching
the text.

Another feature is autocompletion of commands or parameters, on the TAB
key. This is especially convenient when the parameter of a command is a file
or a function: just type in the first few letters of the function or file name and
press TAB. Pressing TAB multiple times cycles through all candidates.

Source View
The source view shows the execution point with a rightwards pointing triangle
in the left margin. The execution point is the line that will be executed next
when continuing execution.

The “cursor line” in the source view is highlighted. You can freely move
the cursor line, using the standard keys for cursor movement (using Arrow
Up/Down, Page Up/Down, Ctrl+Home and Ctrl+End). Every time the target
microcontroller stops, BMDebug sets the cursor line to the execution point.
Alternatively, you can also run to the cursor line with the button Until (or use
function key F7).

When stepping through code, the source view automatically switches to the
source file that the execution point is in. You can select any source file from
the drop-down list in the button bar above the source view. Alternatively, you
can use the list command in the console line (see section Listing Source Code
on page 37). For switching to another source file, the file extension may be
omitted. For example, the following command will load the file blinky.c or
blinky.cpp (whichever is available).

(gdb) list blinky

52 Embedded Debugging with the Black Magic Probe

You may also type a function name or a line number as the parameter to the
list command. This will make the source view jump to that line or to the start
of the given function. The Ctrl+G key combination is a shorthand for the list
command, and if you type only the first letters of a file or function, pressing
TAB will autocomplete the name.

An additional command is provided to search for text in the source file that is
displayed (this is not a GDB command, but one specific to BMDebug).
find text Finds the first occurrence of the text starting from the cursor

line. The search wraps from the bottom of the text to the top.
The text search is case-insensitive. The key combination
Ctrl+F inserts the find command on the edit line.

find Repeats the last search. Function key F3 is a shorthand
for this action.

Running code
The button bar above the source code view has the essential functions for
running and stepping through code. The names of most buttons reflect the
GDB command that it executes: the “step” button executes a step command,
and the “finish” button lets GDB execute a finish command.

The exception is the “reset” button, which reloads and restarts the target
firmware, and then runs up to main.

All buttons have a function key associated with them. For example, F10 does a
next command (step over) and F11 does a step command (step into). A tooltip
on each button shows the equivalent function key.

Breakpoints
You can set a breakpoint either by clicking in the left margin in the source
view, or with function key F9, or with a break command in the console.

When clicking in the source view, clicking a second time on an existing break-
point disables the breakpoint (rather than removing it). To remove the break-
point, you need to click on it a third time (while staying on the line with the
mouse cursor). The breakpoints can also be toggled between enabled and
disabled in the Breakpoints view in the sidebar.

When debugging code in Flash ROM, you can set as many breakpoints as you
like, but only a limited number can be enabled at any time (most Cortex-M
microcontrollers provide 6 hardware breakpoints).

The break command (see Breakpoints and watchpoints on page 40) can also
be used on the console line. The command line allows you to set temporary
breakpoints and watchpoints as well.

Embedded Debugging with the Black Magic Probe 53

Viewing Variables and Registers
Hovering over a variable name in the source view shows the current value of
that variable in a tooltip. Note that the tooltip only appears when the target
is in a stopped state.

The “Locals” view in the right sidebar shows all local variables that are cur-
rently in scope. GDB uses heuristics (based on the variable type) to choose
whether to display integer variables in decimal, hexadecimal or other. In
BMDebug, you can select a different display format after right-click of the
mouse on the value.

The “Watches” view in the sidebar shows the current value of all expressions
that have been added to it. The expression can be as simple as the name of a
variable, but it may include (pointer) redirections and arithmetic operations.
When adding a watch, all variables that are mentioned in the expression are
evaluated in the active scope. The expression of the watch retains this scope.
When stepping into a sub-routine or function, the Watches view keeps show-
ing the watches in the scope that the watch was declared in.

A watch can be added by typing the expression in the edit field in the Watches
view and clicking on the button. You can also use the display command
in the console line (see section Examining Variables and Memory on page 42).
The BMDebug front-end handles the display and undisplay commands inter-
nally.

Standard registers of the microcontroller can be inspected in the “Registers”
view in the right sidebar. Peripheral registers (and some core registers) are
memory-mapped, and not in this view. Instead, BMDebug supports “System
View Description” files (SVD files). These files contain the definitions of the
core and peripheral registers of the microcontroller. When an appropriate
SVD file is loaded, hovering over a register name in the source view shows the
value of the register; likewise, you can add a watch to a peripheral register.

That said, this feature depends on the source code and the SVD file to agree on
the names of peripherals and registers. In practice, this means that SVD files
combine neatly with CMSIS as the hardware abstraction layer, because the
System View Description format is a subproject of CMSIS. The CMSIS project
comes with the SVDConv utility that generates a C/C++ header file from an SVD
file, which is how you can ensure that both the firmware and the debugger
agree on the peripheral & register definitions. When using a different hard-
ware abstraction layer, like libopencm3, SVD files may not be of much use.

Most microcontroller manufacturers provide SVD files for their microcon-
trollers on their web sites. A collection of SVD files for various brands and
series of microcontrollers is available on GitHub, see Further Information on
page 131 for the link.

54 Embedded Debugging with the Black Magic Probe

Viewing Assembly Code
BMDebug can show disassembled machine code, interleaved with the source
code. It uses its own disassembler (rather than the one in GDB), so that the
assembly code can be annotated with peripheral and register names from SVD
files (as covered above).
assembly Switches assembly mode on or off. When used without
assembly on / off parameters, the command toggles the mode.
disassemble The standard GDB disassemble command is redefined to be
disassemble on / off the equivalent to the assembly command.

When in assembly mode, function keys F10 and F11 step by machine instruc-
tion, rather than by source line. Specifically, F10 performs a nexti command
in assembly mode, and a next command when in source more. Likewise, F11
executes a stepi or a step command, depending on the mode.

Viewing Memory
Viewing memory at some address that is not related to a symbol in the pro-
gram, is quite common on microcontrollers. Embedded peripherals are often
memory-mapped and a microcontroller may define special memory regions
for buffers or queues. GDB has the “x” command that fits this purpose (see
page 42). The BMDebug front-end improves on it by displaying the memory
dump in a separate view, and by updating this view at each halting point. It
functions like a watch on a memory range: bytes or words that have changed
since the last refresh are coloured red.

BMDebug supports the same options on the x command as GDB, but its de-
faults are different. Where GDB defaults to displaying a single 32-bit word,
BMDebug defaults to displaying sixteen 8-bit bytes.

Trace Views
Three trace views are provided: one for semihosting output, one for a serial
monitor, and one for SWO tracing. See chapter Run-Time Tracing on page 60
for more information on tracing.

The view for semihosting is always active, and it requires no configuration (ex-
cept that the target firmware must be built to send output via the semihosting
interface).

The serial monitor and SWO tracing view must be configured through com-
mands on the console line. These commands are specific to the Black Magic
Probe and the BMDebug front-end; they are not passed to GDB. Both the se-
rial monitor and the SWO tracing view support The Common Trace Format
(see page 79), for tracing with reduced overhead.

Embedded Debugging with the Black Magic Probe 55

On the topic of SWO tracing: note that while the BMDebug front-end supports
both Manchester encoding and asynchronous encoding, the debug probe de-
ter mines which of the two you can use. At the time of writing, the native Black
Magic Probe supports only Manchester encoding;3 the ctxLink probe supports
only asynchronous encoding.
serial port bitrate Open the serial port at the given bitrate (Baud), to monitor
serial bitrate received data.

If the port name is omitted, the command uses the secondary
TTL-level UART of the Black Magic Probe.
The protocol settings that the serial port are set to, are:
8 data bits, 1 stop bit, no parity.

serial disable Disable the serial monitor, closes the serial port.
serial enable Open the serial monitor with the most recent settings (for

port and bitrate).
serial clear Clear the viewport of the serial monitor (deletes all received

text).
serial filename Set the metadata file for decoding the Common Trace Format

(see page 79). The metadata file is in TSDL format.
When a metadata file is set, incoming serial data is
interpreted as Common Trace Format packets.

serial plain Disable the Common Trace Format decoding and unload a
previously loaded TSDL metadata file.

serial info Show the current configuration.
trace clock bitrate Enable tracing in Manchester encoding.
trace passive If the clock of the target microcontroller and bit rate are set,

the BMDebug front-end configures the target for SWO tracing.
The clock and bitrate parameters may have a MHz or kHz
suffix. For example, the clock may be specified as either
12mhz or 12000000. The bitrate parameter may also use the
“kbps” unit.
If “passive” is set as the command parameter, SWO tracing
is turned on in the Black Magic Probe, but the target is not
configured. Use this option if the firmware of the target
configures SWO tracing itself (in code).
The parameter “passive” may also be written “pasv”.

trace async clock bitrate Enable tracing in Asynchronous encoding with the given
trace async passive bitrate clock of the target microcontroller and bit rate. The clock

and bitrate parameters are the same as with the preceding
command.
If “passive” or “pasv” is set as the command parameter,
SWO tracing is turned on in the Black Magic Probe, but the

3 Version 2.3 of the hardware also supports asynchronous encoding, but firmware support is
still pending.

56 Embedded Debugging with the Black Magic Probe

target is not configured (see also the preceding command).
In the case of asynchronous encoding, the bit rate must still
be set for passive mode.

trace disable Disable SWO tracing.
trace enable Enable SWO tracing using previously configured settings.
trace clear Clear the viewport.
trace 8-bit Set the width of the data in an SWO tracing packet (in relation
trace 16-bit to trailing-zero compression). This value must match the
trace 32-bit value that the target uses. The ubiquitous implementation is
trace auto 8-bit data width (which is the default setting).

When the parameter is auto, the debugger derives the data
width from the incoming data.
See page 9 for more information.

trace filename Set the metadata file for decoding the Common Trace Format
(see page 79). When no file is explicitly set, the BMDebug
front-end looks for a file with the same base name as the ELF
file and a “.tsdl” extension, and it searches in the same
directory as the ELF file, as well as in the directories where
the source files are.

trace plain Disable the Common Trace Format decoding and unload a
previously loaded TSDL metadata file.

trace channel index enable Enable the display of the given channel (range 0..31).
trace chan index enable
trace ch index enable
trace channel index disable Disable the display of the given channel.
trace chan index disable
trace ch index disable
trace channel index name Set a name for the channel marker in the view (the default
trace chan index name name is the channel number). Note that when using the
trace ch index name Common Trace Format, the channel names are initially set

to the “stream” names in the trace metadata.
trace channel index #colour Set the background colour of the channel marker. The colour
trace chan index #colour must be in “HTML format” with three pairs of hexadecimal
trace ch index #colour digits following the “#”, in the order R/G/B.
trace info Show the current configuration and all active channels.

The BMDebug front-end saves target-specific settings, such as the settings for
SWO tracing, in a file with the same name as the target ELF file, but with the
added file extension “.bmcfg.” The settings of this file are reloaded when you
load the ELF file again in BMDebug. Therefore, to enable SWO tracing and
restore all settings and channel configurations from a previous session, the
following command is sufficient:
(gdb) list trace enable
Active configuration: Manchester encoding, passive, data width = 8-bit

Embedded Debugging with the Black Magic Probe 57

Help and info
BMDebug adds a few topics to the help and info commands —see Getting help
and information on page 37 for these commands. When typing help without
parameters, these topics are listed under the sub-head “Front-end topics.”

Edit-Compile-Debug Cycle
While stepping through code or analysing trace output, you may spot some-
thing that needs to be fixed. However, you do not need to leave the debugger
to edit and re-compile the code. It is recommended that you switch to your
editor or IDE and rebuild it, and then reload it in GDB. This way, breakpoints
and other settings are preserved. The code still restarts at main, though.
You can run commands or utilities directly from the GDB prompt, by starting
the command with a “!”. What comes behind the exclamation mark is then run
in the shell or command processor. For example, the line below runs make
to build the “test” target. After building new firmware, you will still need to
load it into the target, of course.
(gdb) !make test

With the BMDebug front-end, the recommended way to reload the ELF file is to
use the button “reset” at the top left of the source view, or the key combination
Ctrl+F2. This buttons not only reloads the file in GDB, it also downloads the
file into the target (provided that the “Download to target onmismatch” option
is ticked in the “Configuration” section in the sidebar).
The gdbgui front-end keeps all source files cached until the “reload file” button
is clicked. Likewise, the BMDebug front-end loads all source files right after
GDB loads the debugging symbols for the ELF file and keeps them in memory.
As a result, if you edit a source file, those changes will not appear in BMDebug
until the ELF file is reloaded (through the “reset” button or F2). The rationale
for this operation is that it keeps the source code, as presented in BMDebug
in line with the debugging information in the ELF file. The upshot is that you
can edit the source code for a program without hesitation while continuing
to debug it. A pitfall with gdbgui, though, is that if you re-run the program
(which reloads the symbolic information), but forget to reload each source file
(with the “reload file” button), the source and the executable are still out of
sync.
Note that when the “Download to target onmismatch” option is disabled in the
configuration, the reset command or button in BMDebug reloads the source
files, but does not download the rebuild ELF file to the target. You will need
to use the load command, or temporarily force reloading with the command:
(gdb) reset load

58 Embedded Debugging with the Black Magic Probe

Another reset option that you may need in special occasions, such as when
the code has accidentally redefined the SWCLK or SWDIO pins, is:
(gdb) reset hard

This option does a full reset of GDB, and either resets or power-cycles the
target (depending on whether the “Power Target” option is set in the configu-
ration).

Debugging Optimized Code
When stepping through the code, the current line may on occasion jump over
a few lines and then jump back up later. This is especially the case with opti-
mized code. The reason is that GDB steps sequentially through the machine
code, and at each point where it stops, it looks up the line number in the
source file that matches the address where it stopped. The GCC compiler
may have rearranged the code that it generated, in order to get a more opti-
mal result. While it is common advice to compile with optimizations disabled,
GDB is actually very capable to debug optimized code —if you can live with
an occasional surprising order of execution.
Another optimization that the GCC compiler may perform, is to inline small
functions. You may not immediately notice this, because GDB is smart enough
to simulate a call to the inlined function when stepping through the code.
That is, you can step into an inlined function, even though there isn’t a call
in the machine code. What you cannot do, however, is place a breakpoint
on the inlined function: the function does not exist as a separate block of
instructions. Instead, you must place the breakpoint at the point (or points)
where the inlined function is called.

Embedded Debugging with the Black Magic Probe 59

Run-Time Tracing
The standard “stop & stare” style of debugging, where you step through code
one line at a time, may not be suitable for an embedded system. When the
code hits a breakpoint or is in “step”-mode, the microcontroller stops, and
this may be too little or too much (even both at the same time). The micro-
controller may not run in isolation: if it drives a linear actuator, that actuator
will continue to run while the MCU is in stopped state, until it reaches a safety
end stop —unless that end stop is handled by an interrupt routine on the same
MCU, in which case the actuator will run until it damages itself. Stopping the
microcontroller does too little in this case: it does not stop the linear actuator,
but it also does too much: it blocks the ISR that handles the safety end stop
from running.

The alternative debugging technique for such circumstances is run-time trac-
ing. The goal of tracing is to be non-intrusive: it gives you insight in what the
code does without interfering with it. Run-time tracing is similar to logging,
the differences between the two are mostly due to their distinctive purposes
(logging is used by system administrators to review activity of the system;
tracing is used by developers to spot software faults). Run-time tracing is
also akin to post-mortem analysis, in the sense that you are analysing the
code flow (and the logic behind that code flow) after the fact.

This chapter has an overview of the various methods for tracing that the Black
Magic Probe offers. Each of these has its own advantages and disadvantages.
The next chapter then delves into an efficient binary format and protocol for
run-time tracing.

Levels of Tracing
The ARM CoreSight architecture has hardware support for both low-level
tracing and high-level tracing. Specifically, the Cortex microcontrollers pro-
vide for three trace sources:

⋄ Instruction trace, which creates a log of every instruction executed by the
microcontroller. It is generated by the Embedded Trace Macrocell (ETM).

⋄ Data trace, to monitor changes of variables or memory. It is generated by
the Data Watchpoint & Trace unit (DWT).

⋄ Software trace, or “debug message,” which sends out printf or transmit
statements that are embedded in the source code of the firmware. Software
trace is also called instrumented trace, because it requires the firmware to
be “instrumented” with trace instructions.

60 Embedded Debugging with the Black Magic Probe

The tracing techniques in this chapter mostly fall in the last category: soft-
ware trace. The exception, in a way, is Tracing with Command List on Break-
points (see page 77) because it does not require instrumenting the source
code.

The main drawback of code instrumentation is that it makes the firmware
code bigger and run slower. Unless you also build a method to disable trac-
ing dynamically in the production code (the code that you distribute), you will
want to remove the trace instrumentation from the production build. It is
therefore common that the code instrumentation is implemented with condi-
tionally compiled macros.

Secondary UART
The Black Magic Probe combines the gdbserver interface with a TTL-level
UART interface (on the same USB connection). If the target board as the
TxD and RxD lines of a UART branched out of the microcontroller, and the
target does not need the UART for other purposes, you can use that port to
output trace messages and capture those on a general purpose serial terminal
or monitor,

Sending trace messages over a UART is a boilerplate technique, because it
works everywhere: all microcontrollers offer one or more UART peripher-
als, and (virtual) serial ports on workstations are commonplace too. Other
than its ubiquity, a benefit of the UART is that it requires only a single pin
—configuring RxD is superfluous for tracing purposes. Of course, this is only
valid in the case that you use tracing as your only means of debugging; other-
wise, the UART pins are in addition to the pins reserved for the JTAG or SWD
interface.1

The RS232 transmission rates are, for today’s standards, rather slow. There-
fore, there is the risk that tracing slows down the code flow too much, defeat-
ing the entire purpose of run-time tracing.

Semihosting
Semihosting uses the debug protocol and interface, so that it does not re-
quire extra pins if you already have the JTAG or SWD pins branched out. This

1 This refers to the number of pins on the microcontroller. With regard to the wiring, the
ground wire must be connected in addition to the TxD and (optionally) RxD pins. When
using the secondary UART of the Black Magic Probe, the device’s power should normally be
connected to the VCC pin of the UART connector of the Black Magic Probe —see page 122.

Embedded Debugging with the Black Magic Probe 61

is especially convenient if you are using an ST-Link clone instead of the orig-
inal Black Magic Probe hardware, because the ST-Link clones have neither a
secondary UART for tracing, nor the TRACESWO pin branched out (see page
65).

Due to additional overhead by the debug probe, semihosting has lower perfor-
mance than using a UART. Semihosting also requires support from the debug
probe and the debugger running on the remote host, but both the Black Magic
Probe and GDB provide the necessary support. The source code must further-
more be instrumented with calls to trace, printf or similar.

At a low level, semihosting works by inserting a software breakpoint (or some-
times a software exception) in the code, followed by a special token value.
When the microcontroller reaches that instruction, it halts and signals the
debug probe. The debug probe first looks at the address of the break in-
struction, sees the token, and enters semihosting state. It then analyses two
registers, r0 and r1, which carry a command code and a pointer to a param-
eter block. The debug probe forwards the commands to the debugger (GDB
in our case), which runs it and may transmit results back.

The ARM semihosting protocol is extensive and flexible. In principle, it allows
the embedded target to relegate console and file I/O to the host. For tracing,
only a single command code is relevant (SYS_WRITE). The snippet below is a
function for transmitting a trace message using semihosting, implemented in
GCC.
void trace(const char *message)
{

uint32_t command = 5; /*SYS_WRITE*/
uint32_t packet[3] = { 2 /*stderr*/, (uint32_t)message, strlen(message) };
__asm__ (

"mov r0, %0\n"
"mov r1, %1\n"
"bkpt #0xAB\n"

:
: "r" (command), "r" (packet)
: "r0", "r1", "memory"

);
}

The command code 5 is defined for writing to a file, and file handle 2 (the first
word in the packet array) is the predefined handle for “standard error” con-
sole output. When calling trace("Hello world") from your code (and running
it from GDB), this text will be printed on the GDB console.

The reason for writing to file handle 2 (stderr) instead of handle 1 (stdout)
is that when using GDB without a front-end, stderr can be redirected to a
file or separate terminal (instead of being mixed with GDB console output).

62 Embedded Debugging with the Black Magic Probe

Note, however, that GDB prints errors messages to stderr also, so GDB out-
put and trace messages can still wind up interlaced. A front-end may write
semihosting output to a separate view or window (regardless of whether it is
sent to stderr or stdout), however in this case, output from the Black Magic
Probe itself may also wind up in that view. The BMDebug front-end shows
semihosting output in the “Semihosting output” view, see page 55).

The above snippet is for the ARMv6-M and the ARMv7-M architectures (ARM
Cortex M0, M0+ M1, M3, M4 and M7 series). On other architectures, you
may need the SVC instruction rather than BKPT.

Depending on the standard libraries that you use, you may not need to im-
plement a trace function yourself, but simply use printf() via semihosting.
In particular, the library librdimon (part of newlib) implements semihosting
calls. If you use newlib, it is sufficient to add the following option to the linker
command line:
--specs=rdimon.specs

A drawback of semihosting is that if no debugger is attached, the software
breakpoint triggers a HardFault exception —and typically stops the entire de-
vice in its tracks. Trace calls via semihosting are therefore typically wrapped
inside macros whose definition is conditional on the build: debug versus re-
lease, and you must be careful to never run a debug build outside a debugger.

An alternative is to determine at run-time whether a debugger is attached,
and adjust the trace() function to return straight away if otherwise. On a
Cortex M3/M4/M7 microcontroller, this is as easy as testing the lowest bit of
the Debug Halting Control & Status Register (DHCSR):
if (CoreDebug->DHCSR & 1) {

/* debugger attached */
} else {

/* not running under a debugger */
}

On the Cortex M0/M0+ microcontroller architecture, the CoreDebug regis-
ters are only accessible from the JTAG/SWD interface, however, not from the
code that runs on the microcontroller. Instead, you can implement a Hard-
Fault handler to check the cause of the exception and return to the caller if it
turns out to be a semihosting call. This way, the trace() function still drops
on the BKPT instruction and still causes a HardFault exception (in absence of
a debugger), but the HardFault handler ignores it and moves the program
counter to the instruction behind it.

The HardFault handler approach for run-time debugger detection works on
all Cortex architectures, it is not restricted to Cortex M0/M0+. On projects
build with CMSIS and libopencm3, a user-defined exception handler automat-
ically replaces the default implementation, provided that it has the correct

Embedded Debugging with the Black Magic Probe 63

name. This is HardFault_Handler() for CMSIS, and hard_fault_handler()
for libopencm3.

__attribute__((naked))
void HardFault_Handler(void)
{

__asm__ (
"mov r0, #4\n" /* check bit 2 in LR */
"mov r1, lr\n"
"tst r0, r1\n"
"beq msp_stack\n" /* load either MSP or PSP in r0 */
"mrs r0, PSP\n"
"b get_fault\n"

"msp_stack:\n"
"mrs r0, MSP\n"

"get_fault:\n"
"ldr r1, [r0,#24]\n" /* read program counter from the stack */
"ldrh r2, [r1]\n" /* read the instruction that caused the fault*/
"ldr r3, =0xbeab\n" /* test for BKPT 0xAB (or 0xBEAB) */
"cmp r2, r3\n"
"beq ignore\n" /* BKPT 0xAB found, ignore */
"b .\n" /* other reason for HardFault, infinite loop */

"ignore:\n"
"add r1, #2\n" /* skip behind BKPT 0xAB */
"str r1, [r0,#24]\n" /* store this value on the stack */
"bx lr"

);
}

The way the HardFault handler works is slightly convoluted, because the
ARM Cortex microcontroller has two stack pointers, for the “main stack” and
the “process stack.” When the exception occurred, the microcontroller has
pushed a set of registers on the stack, including the program counter, but the
first thing the HardFault handler must do is to check which stack. Once it
has the appropriate stack pointer, by testing bit 2 in the LR register, it gets
the value of the program counter. The program counter is the address of the
instruction that caused the exception, so the handler reads from that address
and tests for opcode 0xBE with parameter 0xAB. On a match, it is a semihosting
breakpoint and it increments the program counter value on the stack before
returning; effectively returning to the instruction that follows the breakpoint.
Otherwise, it drops into an infinite loop, just like the default implementation
for the HardFault handler.

64 Embedded Debugging with the Black Magic Probe

SWO Tracing
The ARM Cortex M3, M4, M7 and A architectures provide a separate pin
for tracing system and application events at a high data rate. This is the
TRACESWO pin on the Cortex Debug header (see page 24). The ARM Cortex
M0 and M0+ architectures lack support for SWO tracing, but see section SWO
Tracing on the Cortex M0/M0+ on page 70 for a workaround.

The SWO Trace protocol allows messages to be transmitted on 32 channels
(or stimulus ports, per the ARM documentation). This allows you to separate
output for different modules in the firmware or to implement different levels
of trace detail, because each channel can be individually enabled or disabled.
By convention, the last channel (channel 31) is reserved for use by an RTOS.
Sending a trace message on a channel that is disabled takes negligible time,
and therefore it may be an option to leave the trace calls in the production
code.

With CMSIS, a typical implementation of a trace() function is as below. Note,
however, that the CMSIS function ITM_SendChar() is hard-coded to use chan-
nel 0.

void trace(const char *msg)
{

while (*msg != '\0')
ITM_SendChar(*msg++);

}

Apart from being limited to channel 0, the above function is also inefficient.
With tracing disabled, the function still runs over all characters in the mes-
sage and calls a function. Moreover, as explained in section TRACESWO Pro-
tocol (page 8), this protocol transmits packets of 1 to 4 bytes, and it pre-
fixes each packet with a header byte. With the CMSIS implementation of
ITM_SendChar(), each packet has a payload of only a single byte. As a result,
the effective transfer speed of SWO tracing has just been halved (sending one
byte in reality sends two: a header byte and a payload byte).

A more flexible and efficient function is below. It starts by checking whether
tracing is enabled, both globally and on the chosen channel, so that it doesn’t
even run through the message string if nothing would be output anyway. If
that test drops through, it collects up to 4 characters from the message into a
32-bit word, before storing it in the FIFO of the Instrumentation Trace Macro-
cell (ITM). The FIFO is accessed via the register PORT, which is in fact an array
of 32 registers. Before storing every next packet in the FIFO for the trace sub-
system, the function waits in a while loop until the FIFO has space to hold the
new packet.

Embedded Debugging with the Black Magic Probe 65

void trace(int channel, const char *msg)
{

if ((ITM->TCR & ITM_TCR_ITMENA) != 0UL && /* ITM tracing enabled */
(ITM->TER & (1 << channel)) != 0UL) /* ITM channel enabled */

{
/* collect and transmit characters in packets of 4 bytes */
uint32_t value = 0, shift = 0;
while (*msg != '\0') {

value |= (uint32_t)*msg++ << shift;
shift += 8;
if (shift >= 32) {

while (ITM->PORT[channel].u32 == 0UL)
{} /* null statement */

ITM->PORT[channel].u32 = value;
value = shift = 0;

}
}
/* transmit last collected characters */
if (shift > 0) {

while (ITM->PORT[channel].u32 == 0UL)
{}

ITM->PORT[channel].u32 = value;
}

}
}

The PORT register allows 8-bit, 16-bit and 32-bit accesses, and this relates to
the trailing-zero compression used by the SWO Trace protocol (again, see sec-
tion TRACESWO Protocol on page 8). In fact, the implementation in the above
snippet could be optimized a little further still: when transmitting the last
collected bytes, it now always sends a 32-bit payload —due to the assignment
to PORT[].u32.

For trace viewers, zero compression adds the complexity that on reception of
a packet with a 1-byte or 2-byte payload, there is no automatic way to know
whether it should possibly be expanded to a 32-bit value. Text messages do
not contain zero bytes, so that is our escape here, but the above becomes
relevant in chapter The Common Trace Format (page 79), which uses a binary
stream.

SWO Tracing must first be configured in the microcontroller, which can be
done either in the firmware (i.e. source code), or via the debug probe. Joseph
Yiu, author of The Definitive Guide to ARM Cortex-M3 Processors, argues
that configuration should be done by the debugging tool, as to avoid that
the firmware and the debugging tool overwrite each-other’s settings. On the
other hand, some microcontrollers require additional device-specific configu-

66 Embedded Debugging with the Black Magic Probe

ration that is not standardized by ARM. Configuring the tracing in the source
code (at least partially) may therefore be unavoidable.

The Orbuculum project allows both approaches. The trace capture tools of
this project do not perform any configuration, but the project comes with
.gdbinit files with settings and definitions to perform the configuration from
within GDB. The Orbuculum trace tools do not require GDB in itself, but even
if you perform the trace configuration in code, you still need GDB to enable
the trace option on the Black Magic Probe.

The command to enable tracing in the Black Magic Probe is below. Once set,
it remains enabled (there is no way to disable the capture of SWO tracing in
the Black Magic Probe, except for unplugging and re-plugging it).
(gdb) monitor traceswo

The SWO Trace protocol uses one of two serial formats: asynchronous encod-
ing and Manchester encoding. The ARM documentation occasionally refers
to these encodings as NRZ and RZ (Non-Return-to-Zero and Return-to-Zero).
A property of Manchester encoding is that the clock speed can be determined
from the data stream, so the bit rate does not need to be specified on the
traceswo command. However, the Black Magic Probe lacks a hardware de-
coder for the Manchester bit stream, and therefore (since it handles the de-
coding in software) the supported bit rates are limited to roughly 200 kb/s.

The asynchronous protocol generally allows for higher bit rates. The clock
speed cannot be recovered from the data stream though, so for asynchronous
encoding, the bit rate must be set on the traceswo command.
(gdb) monitor traceswo 2250000

The target must be able to configure the same bit rate, within an error margin
of 3%. Also note that the debug probe may have additional limits on the
supported bit rates. For example, on the Black Magic Probe (and clones that
use the STM32F10x microcontroller), the bit rate must be 4.5 Mb/s divided by
an integer value, and with a maximum of 2.25 Mb/s.2

The choice between the two protocols may be dictated by the debug probe.
The native Black Magic Probe supports only Manchester encoding,3 whereas
the ctxLink probe (and a few other derivatives of the Black Magic Probe) in-
stead support asynchronous encoding exclusively.

2 Running at 72 MHz, the USART of the STM32F10x is limited to 4.5 Mb/s. However, the USB
peripheral of the STM32F10x overflows at a continuous data stream of 4.5 Mb/s, which is
why the “traceswo” bit rate is limited to half that rate.

3 Hardware version 2.3 of the Black Magic Probe is adapted to support asynchronous encoding
as an option, but firmware support is “pending” at the time of writing.

Embedded Debugging with the Black Magic Probe 67

The initialization that is generic for all ARM Cortex microcontrollers starts
below. It involves a number of subcomponents of the CoreSight architecture,
notably the Instrumentation Trace Macrocell (ITM) and the Trace Port Inter-
face Unit (TPIU, also called TPI), but registers in the Core Debug and Data
Watchpoint & Trace (DWT) modules may come into play as well.

void trace_init(int protocol, uint32_t bitrate, uint32_t channelmask)
{

uint32_t clockfreq = (protocol == 1) ? 2 * bitrate : bitrate;

CoreDebug->DEMCR = CoreDebug_DEMCR_TRCENA_Msk;

TPI->CSPSR = 1; /* protocol width = 1 bit */
TPI->SPPR = protocol; /* 1 = Manchester, 2 = Asynchronous */
TPI->ACPR = CPU_CLOCK_FREQ / clockfreq - 1;
TPI->FFCR = 0; /* turn off formatter, discard ETM output */

ITM->LAR = 0xC5ACCE55; /* unlock access to ITM registers */
ITM->TCR = ITM_TCR_SWOENA_Msk | ITM_TCR_ITMENA_Msk;
ITM->TPR = 0; /* privileged access is off */
ITM->TER = channelmask; /* enable stimulus channel(s) */

}

Parameter “protocol” must be 1 for Manchester encoding, or 2 for asyn-
chronous encoding. Parameter “channelmask” is a bit mask where a “1” bit
enables the respective channel. Note that for Manchester encoding, the clock
frequency is twice the bit rate, because there may be transitions halfway the
bit period.

An extra device-specific initialization step often needs to precede the generic
initialization. Examples for a few microcontroller series are below. Note that
some microcontrollers do not need any device-specific initialization (for ex-
ample, the LPC175x and LPC176x series).

STM32F10x series
void trace_init_STM32F10x(void)
{

RCC->APB2ENR |= RCC_APB2ENR_AFIOEN; /* enable AFIO access */
AFIO->MAPR |= AFIO_MAPR_SWJ_CFG_1; /* disable JTAG to release TRACESWO*/
DBGMCU->CR |= DBGMCU_CR_TRACE_IOEN; /* enable IO trace pins */

}

If AFIO_MAPR_SWJ_CFG_1 is not defined in the device header file of your devel-
opment suite, note that it is “(2 << 24).”

68 Embedded Debugging with the Black Magic Probe

STM32F4xx series4
void trace_init_STM32F4xx(void)
{

RCC->AHB1ENR |= RCC_AHB1ENR_GPIOBEN; /* enable GPIOB clock */
GPIOB->MODER = (GPIOB->MODER & ~0x000000c0) | 0x00000080; /* alt func for PB3 */
GPIOB->AFR[0] &= ~0x0000f000; /* set AF0 (==TRACESWO) on PB3 */
GPIOB->OSPEEDR |= 0x000000c0; /* set max speed on PB3 */
GPIOB->PUPDR &= ~0x000000c0; /* no pull-up or pull-down on PB3 */
DBGMCU->CR |= DBGMCU_CR_TRACE_IOEN; /* enable IO trace pins */

}

SAM D5x series4
void trace_init_SAMD5x(void)
{

GCLK->PCHTRL[47] = GCLK_PCHCTRL_GEN(0) | GCLK_PCHCTRL_CHEN; /* enable peripheral
clock on GCLK_CM4_TRACE */

PORT->Group[1].PMUX[15].bit.PMUXE = PORT_PMUX_PMUXE(7); /* set PB30 to SWO */
PORT->Group[1].PINCFG[30].bit.PMUXEN = 1; /* enable PMUX for PB30 */

}

LPC13xx series
void trace_init_LPC13xx(void)
{

LPC_SYSCTL->TRACECLKDIV = 1;
LPC_IOCON->PIO0_9 = 0x83; /* func 3, no pull-up/down */

}

LPC15xx series
void trace_init_LPC15xx(int pin)
{

LPC_SYSCTL->TRACECLKDIV = 1;
LPC_SWM->PINASSIGN15 = (LPC_SWM->PINASSIGN15 & ~(0xff << 8)) | (pin << 8);

}

LPC5410x series
void trace_init_LPC15xx(void)
{

LPC_SYSCTL->TRACECLKDIV = 1;
LPC_SYSCTL->SYSAHBCLKCTRLSET = 1 << 13;
LPC_IOCON->PIO0_15 = 0x82; /* func 2, no pull-up/down, digital */

}

4 Adapted from the GDB scripts of the Orbuculum project.

Embedded Debugging with the Black Magic Probe 69

LPC5411x series
void trace_init_LPC15xx(void)
{

LPC_SYSCTL->TRACECLKDIV = 0;
LPC_SYSCTL->SYSAHBCLKCTRLSET = 1 << 13;
LPC_IOCON->PIO0_15 = 0x82; /* func 2, no pull-up/down, digital */

}

LPC546xx series
void trace_init_LPC15xx(void)
{

LPC_SYSCTL->TRACECLKDIV = 0;
LPC_SYSCTL->SYSAHBCLKCTRLSET = 1 << 13;
LPC_IOCON->PIO0_10 = 0x306; /* func 6, digital, filter off */

}

SWO Tracing on the Cortex M0/M0+
The ARM Cortex M0 and M0+ architectures lack support for SWO tracing.
While you still have the option for tracing via a UART or semihosting, if you
want to use a uniform debugging environment for all ARM Cortex microcon-
trollers, it may be worthwhile to emulate SWO tracing on Cortex M0/M0+.

• Emulating asynchronous mode

When using a ctxLink or another debug probe that supports asynchronous
mode, the first step in emulating SWO is to wire the TxD pin of the UART
to TRACESWO on the debug connector. The function to transmit the trace
messages must be adapted to add a header byte in front of each packet (as
explained in section TRACESWO Protocol on page 8). In a nutshell, an SWO
packet can have a payload 1, 2, or 4 bytes, so there is a header byte for every
sequence of payload. Obviously, it must also store the data (header bytes plus
payload) in the UART FIFO instead of in the ITM FIFO.
The function ARM_USART_Send that is used in the snippet below is appropriate
for the Keil implementation of CMSIS (and perhaps others); you may need to
replace it with an equivalent function when using another UART driver library.
In this implementation, the global variable TRACESWO_TER takes over the role
of the “Trace Enable Register” (TER) of the ITM. It must be declared as a 32-bit
integer, and I recommend that it is initialized to zero. This way, when running
the firmware outside a debugger, all traces drop out immediately, but when
running under GDB (or a trace viewer that uses the gdbserver), the debugger
can set this variable to a non-zero value and enable the trace channels. The
BMTrace trace viewer (page 73) and BMDebug front-end (page 50) check for
a variable with the name “TRACESWO_TER” and configure it automatically when
enabling or disabling channels from the user interface.

70 Embedded Debugging with the Black Magic Probe

void trace(int channel, const unsigned char *data, unsigned size)
{

if (TRACESWO_TER & (1 << channel)) { /* if channel is enabled */
uint8_t header;
while (size >= 4) {

header = (channel << 3) 3;
ARM_USART_Send(&header, 1);
ARM_USART_Send(data, 4);
data += 4;
size -= 4;

}
if (size >= 2) {

header = (channel << 3) 2;
ARM_USART_Send(&header, 1);
ARM_USART_Send(data, 2);
data += 2;
size -= 2;

}
if (size >= 1) {

header = (channel << 3) 1;
ARM_USART_Send(&header, 1);
ARM_USART_Send(data, 1);

}
}

}

• Emulating Manchester mode

At the moment of writing, the native Black Magic Probe only supports Manch-
ester mode for SWO tracing. The obvious recourse is to emulate Manchester
mode via bit-banging, but that is slow, and to keep within the timing con-
straints the bit-banging routine must run with interrupts disabled. The com-
bination of the two: slow code that runs with interrupts disabled, carries a
risk that interrupts are not responded to quickly enough, or even that they
are missed altogether.

There is yet a way to implement hardware-supported SWO emulation on a
Cortex M0/M0+, if you have a spare SPI interface on your microcontroller.
The trick is to expand each bit that is transmitted to a two-bit sequence: a 1 to
“10” and a 0 to “01”, and then transmit these through over the MOSI line. This
expansion can be efficiently done per 4 bits with a 16-byte lookup table. This
same lookup table inverts the bit order: the SPI protocol transmits the most-
significant bit first, whereas the SWO protocol (with Manchester encoding)
transmits the least-significant bit first.

Embedded Debugging with the Black Magic Probe 71

static const uint8_t manchester_lookup[16] = {
0x55, /* 0000 -> 0101 0101 */
0x95, /* 0001 -> 1001 0101 */
0x65, /* 0010 -> 0110 0101 */
0xa5, /* 0011 -> 1010 0101 */
0x59, /* 0100 -> 0101 1001 */
0x99, /* 0101 -> 1001 1001 */
0x69, /* 0110 -> 0110 1001 */
0xa9, /* 0111 -> 1010 1001 */
0x56, /* 1000 -> 0101 0110 */
0x96, /* 1001 -> 1001 0110 */
0x66, /* 1010 -> 0110 0110 */
0xa6, /* 1011 -> 1010 0110 */
0x5a, /* 1100 -> 0101 1010 */
0x9a, /* 1101 -> 1001 1010 */
0x6a, /* 1110 -> 0110 1010 */
0xaa, /* 1111 -> 1010 1010 */

};

#define M_EXPAND(buffer, byte) \
((buffer)[0] = manchester_lookup[(byte) & 0x0f], \
(buffer)[1] = manchester_lookup[(uint8_t)(byte) >> 4])

Apart from the bit expansion, the routine to emulate Manchester encoding is
similar to the one that emulates asynchronous encoding for SWO tracing, on
page 70, so it is not repeated here. A separate implementation (source code
file) is provided among the example files with this book.

Monitoring Trace Data
As of version 1.7 of the firmware of the Black Magic Probe, you can redirect
the SWO trace data to the virtual UART. The upside is that you only need a
serial terminal to view the trace data, and there are many to choose from.
However, there are downsides too: channel information is not preserved, and
filtering of enabled channels happens in the Black Magic Probe, instead of in
the target. Furthermore, and probably a minor point, the Black Magic Probe
has only a single UART interface, so you cannot use both the UART and trace
redirection at the same time. See the traceswo command on page 47 for more
information.

To elaborate on the limitations of the transmission of SWO trace data over the
UART, there are two practical uses for the channel information. The first is
to separate the messages in different lists, or mark them in different colours.
The second is to reduce the performance impact of tracing, by disabling the
channels that are not relevant in the context of a particular debug session.
Trace data that is not transmitted implicitly has minimal overhead. When

72 Embedded Debugging with the Black Magic Probe

you let the Black Magic Probe transmit the SWO trace data over the UART, it
allows you to enable or disable channels; however, it is the Black Magic Probe
that filters out the disabled channels. The target still transmits all trace data
for all channels to the Black Magic Probe. So you are still subject to the full
performance penalty of the SWO transmission —and especially so in the case
of Manchester encoding.

The alternative is to capture the SWO trace data directly. This requires a
special tool or viewer. An advanced set of tools is the Orbuculum project,
which was mentioned earlier. The main program, orbuculum, does the hard-
ware capture and provides the data (after some internal processing) onto a
TCP/IP port. Other utilities in the project connect to this TCP/IP port for post-
processing and visualization. This client-server architecture allows multiple
tools or viewers to access the trace data simultaneously. The packet data that
the orbuculum server makes available on the TCP/IP port has the same format
as that of the SEGGER J-Link probe, thereby allowing you to use the SEGGER
software tools with the Black Magic Probe. Orbuculum runs on Linux, MacOS
and a Microsoft Windows.

A stand-alone graphical trace viewer for SWO tracing using the Black Magic
Probe is BMTrace: the BlackMagic Trace Viewer. It runs under Microsoft Win-
dows and Linux. The BMTrace utility does not require GDB, because it uses
the Remote Serial Protocol (RSP) to configure the target and the Black Magic
Probe. The BMTrace utility performs the generic configuration for SWO trac-
ing as well as the device-specific configuration for the microcontrollers that it
supports. Another distinctive feature of BMTrace is that it supports the Com-
mon Trace Format, see page 79.

Embedded Debugging with the Black Magic Probe 73

As described earlier, SWO tracing can use either modes Manchester or Asyn-
chronous, but most variants of the Black Magic Probe support only one of these
(and not both). If BMTrace detects that the selected debug probe is a native
Black Magic Probe, it sets Manchester mode; likewise, if it detects the ctxLink
probe, it sets Asynchronous mode. For other Black Magic Probe variants, you
must select the mode in the configuration of BMTrace.

The BMTrace utility optionally configures the target for SWO tracing, and it
sets up the Black Magic Probe for SWO tracing as well. For the target config-
uration, it needs to know the clock that the target microcontroller runs on, as
well as the data rate (bit rate) of the transfer.

You can select to skip the target configuration. The target configuration for
SWO (both generic and device-specific) then has to be done from GDB, or be
performed in the firmware code —like in the code snippets starting on page
68. Setting up the Black Magic Probe for SWO tracing can also be disabled. If
both these options are disabled, BMTrace functions as a “passive listener”: it
captures SWO trace messages, but does not interact with the target and does
not connect to Black Magic Probe’s gdbserver (it connects only to the separate
USB endpoint for SWO tracing). The “passive listener” mode allows you to
use BMTrace in combination with GDB (which then connects to gdbserver).

Any of the 32 channels can be enabled or disabled. A right-click on the channel
selector pops up a window to set a colour and a name for the channel. Note
that when running in passive mode, any disabled channels are simply hidden
in the trace viewer; they are not disabled in the target (because BMTrace does
not communicate with the Black Magic Probe in passive mode). When running
in CTF mode (Common Trace Format, see page 79), the names of the channels
are overruled by the “stream” names that are defined in the metadata file for
the traces.

Apart from filtering on channels, BMTrace allows filtering incoming messages
on keywords in the text. If no filters are set, all messages are shown; if one
or more filters are set, only the messages that match any of these filters are
shown. If the filter text starts with a “~”, the filter is inverted: the message
is not shown if it contains the keyword (behind the tilde). Each filter can be
enabled or disabled, for quickly toggling them on or off.

The time stamps in the BMTrace utility are relative to the first message that
was received. With one exception, these time stamps are of the moment of
reception of the trace data. Due to latencies of the USB stack and jitter in the
scheduling of the operating system, these time stamps are indicative, but not
conclusive. The exception is that if the incoming trace data is in the Common
Trace Format and timestamps are present in the CTF stream, BMTrace shows
these embedded timestamps instead. These timestamps are generated on the
target, and they are generally more accurate.

74 Embedded Debugging with the Black Magic Probe

Real Time Transfer (RTT)
Real Time Transfer (RTT) is a bidirectional communication protocol developed
by SEGGER Microcontroller. The communication runs over the debugging
interface —SWD in the case ARM Cortex, so it requires no extra pins. It does
require support code in the firmware, though.

RTT works by having the firmware store its output into a queue in RAM. The
debug probe then reads this queue at a regular interval, and forwards it to
the host. A basic function for any embedded debug protocol is to be able
to access all of the memory of the target device. In the case of the ARM
CoreSight architecture, the debug subsystem runs independently from the
microcontroller core. RTT builds on this to be able to read the queue without
affecting normal code execution.

From the perspective of the firmware, storing a character in a queue (or “ring
buffer” as the RTT documentation calls it), is very fast. This minimizes the
slowdown that run-time tracing has on the code —until the queue is full. If that
happens, RTT offers a choice between stalling until the debug probe empties
the queue, and simply dropping all data that no longer fits. Neither option is
attractive. In practice, trace messages often come in bursts. One can take
advantage of this by defining the queue big enough to hold a burst of messages
without overflowing (after which the probe reads and empties the queue at
its own pace).

On the target device, code must be added to declare the data structure for
the queue, as well as functions to push data into the queue. The canonical
implementation in C is provided by SEGGER, with a very liberal license. The
snippet below shows the ease of use for the RTT library.
#include "SEGGER_RTT.h"

int main(void)
{

SEGGER_RTT_Init();

/* ... */

SEGGER_RTT_WriteString(0, "Hello World\n");

/* ... */
}

At the same time, this snippet only scratches the surface of RTT’s functional-
ity. RTT allows for multiple channels, and you can define channels for input,
as well as output. The first channel (numbered zero) is predefined, for both
input and output —although you can override the default queue sizes.

The data structure with the channel definitions consists of a header with a
signature, followed by a list of fields for each possible channel. In RTT, this

Embedded Debugging with the Black Magic Probe 75

data structure is called the “control block.” You can print out this structure
with a monitor command.
(gdb) monitor rtt cblock
cbaddr 0x20000728
ch ena i/o buffer@ size head tail flag
0 y out 0x200000b0 1024 977 977 2
1 y out 0x00000000 0 0 0 0
2 n out 0x00000000 0 0 0 0
3 y in 0x000000a0 16 8 0 0
4 n in 0x00000000 0 0 0 0
5 n in 0x00000000 0 0 0 0

The above list represents a default configuration. By default, there is a maxi-
mum of three output channels and three input channels, but only the first two
output channels and the first single input channels are enabled. Furthermore,
although output channel 1 is enabled, there is no buffer attached to it, so it is
effectively non-functional until it is explicitly initialized in the firmware. The
maximum number of output and input channels is fixed at compile time, but
queues (buffers) must be assigned at run time (with the exception of the first
output and the first input channel). Als note that the definition blocks for
the input channels always follow those of the output channels, and while the
channels are numbered sequentially, in the RTT API input channel numbering
restarts at zero.

The signature (or “ident string”) is not displayed by the above command, but
if you dump the memory at the returned address for the “cbaddr” structure, it
will start with the signature strings —the default is “SEGGER RTT”. The debug
probe uses the signature to scan memory (of the target) for the RTT control
block. In fact, before the above command outputs the table with the channel
configurations, RTT must first have been enabled (the Black Magic Probe only
scans for the RTT control block after RTT is eanled).

There are two caveats with the scan for the RTT control block. Firstly, if the
signature has been changed from the default in the configuration file for the
firmware, the signature must be set before enabling RTT:
(gdb) monitor rtt ident secret_trace

Secondly, the probe scans the memory range that is recorded for the driver
for the target microcontroller. However, manufactures often create a micro-
controller in several variants, which differ only in the amount of Flash ROM
and SRAM. The Black Magic Probe uses a single driver for these variants, and
records the memory ranges of the largest variant. The upshot is that when
you are using a smaller variant, the memory range that Black Magic Probe has
recorded for it (and which you can see with an “info mem” GDB command) is
too large. If you then enable RTT, and the signature is not found in the valid
memory range, the debug probe will continue to search in non-existing RAM

76 Embedded Debugging with the Black Magic Probe

—which may then cause a hard fault exception, and hang the firmware. To
avoid this, you can explicitly set the memory address range for the RTT scan:
(gdb) monitor rtt ram 0x20000000 0x20004000

See also the section Real Time Transfer on page 48 for more GDB monitor
commands, related to RTT.

At the time of writing, only the Jeff Probe supports RTT in its officially released
firmware. The Black Magic Probe supports RTT in its development branch (i.e.
not in the stable release), and only is source form (i.e. not in the daily builds).
Hence, you will need to compile the BMP firmware yourself. The technology
behind RTT is patented,5 which may be why the black-magic project decided
to distribute the implementation as source only. Please see the black-magic
project for instructions to build the firmware; see chapter Further Information
on page 131 for a link.

The Black Magic Probe forwards the RTT data to its secondary virtual serial
interface. To view the output, only a serial terminal is needed. In the serial
terminal, you can set any baud rate (and data & stop bits) for opening the
connection, because the virtual interface ignores these settings.

Obviously, you cannot use the real TTL-level UART on the Black Magic Probe
at the same time as RTT. There is only a single interface (COM port or ttyACM
device) for both functions.

Tracing with Command List on Breakpoints
Setting and using breakpoints is covered in section Breakpoints and watch-
points (page 40). A feature of GDB is that a list of commands may be attached
to a breakpoint, and this list is executed whenever the breakpoint is hit. The
trick is: when the final command in this list is “continue”, you have created
a breakpoint that “drops through”.

For example, consider a command list with only the continue command:
(gdb) break 121
Breakpoint 3 at 0x3ce: file blinky.c, line 121.
(gdb) command 3
Type commands for breakpoint(s) 3, one per line.
End with a line saying just "end".
>continue
>end

5 US patent US9384106B2, Real time terminal for debugging embedded computing systems.

Embedded Debugging with the Black Magic Probe 77

On setting a breakpoint (on hypothetical line 121), GDB responds that break-
point number 3 was set. When adding a command list, we will therefore have
to repeat this identifier.
When running the code, GDB will print lines similar to the following, each
time that the breakpoint is hit:
Breakpoint 3, main () at blinky.c:121
121 LPC_GPIO->SET[led_ioport] = led_iobit; /* turn LED on */

While this only shows that the line was reached, the important difference
with the alternative trace methods is that the code does not need to be in-
strumented with trace calls. This implies that no recompilation is necessary
if you want to move or add a trace-point. This method of tracing is therefore
convenient if you want to check whether a particular line is reached. A limita-
tion of this technique is that there is only a small pool of hardware breakpoints
(which are needed when running from Flash).
Any GDB command can be inserted before the continue command. For exam-
ple, a print command to show the values of specific variables, or a backtrace
command to show the call stack that lead to the breakpoint being reached.

78 Embedded Debugging with the Black Magic Probe

The Common Trace Format
As explained in the chapter on Run-Time Tracing (page 60), the intention of
run-time tracing is to be a non-intrusive method of debugging. This implies
that the trace messages should have negligible overhead, in time and other
resources. If the overhead is non-negligible, the software may behave differ-
ently when being traced, than when running without tracing: a symptom that
is called the probe effect.1

When we focus on the time, the factors that contribute to “overhead” (i.e.
latency) are:
⋄ The need to format the data into a trace message prior to transmitting it.
⋄ The amount of data to transfer, either to a remote “trace viewer” or inter-

nally to a display system.
⋄ The speed of the data transfer, and any I/O overhead in accessing it.

When it comes to avoiding the probe effect, there is a prevalent fixation on
the last point, the speed of the transfer interface. Yet, it is obvious that no
matter how well you’ve optimized sprintf, skipping it entirely will always
be quicker; like it is obvious that transmitting a few bytes is quicker than
transmitting many (under equal conditions). Possibly, higher transfer speeds
were the easiest goal to achieve in the early days, and perhaps as a corollary
to the Law of the Hammer,2 the reflex is to search for a bigger hammer if the
current one won’t do any more.

Both the other two points (avoiding message formatting on the target and min-
imizing the amount of data that needs to be transferred) are addressed by the
Common Trace Format (CTF). The Common Trace Format is a specification for
a binary data format plus a human-readable “metadata file” to map the binary
data to readable text. It thus does away with the formatting and conversion
on the microcontroller, and it also skips transferring text strings when it can
instead reference these strings in the metadata file. The CTF specification
is maintained by the Diagnostic and Monitoring workgroup (DiaMon) of the
Linux Foundation.

The metadata file defines the names of trace “events,” the streams that these
events belong to, and the names and types of any parameters of each event.
This is all recorded in a declarative language with a C-like syntax: the Trace
Stream Description Language (TSDL). The metadata is shared (directly or in-
directly) between the target that produces the trace messages and the trace

1 J. Gait; A probe effect in concurrent programs; Software: Practice and Experience; March
1986.

2 “I suppose it is tempting, if the only tool you have is a hammer, to treat every thing as if it
were a nail.” [Abraham Maslow; The Psychology of Science; 1966]

Embedded Debugging with the Black Magic Probe 79

viewer. The Common Trace Format achieves its compactness because the data
in this metadata file is never transmitted.

The Common Trace Format is the cornerstone of LTTng (Linux Trace Toolkit
next generation); however, a call into LTTng is not exactly low-overhead in
execution time —the rationale for LTTng’s use of CTF is to minimize storage
requirements. Besides, it is not an option for embedded systems that run on
something other than the full Linux kernel.

Two tools exist that generate OS-independent C code for CTF: barectf by
the same authors as CTF, and tracegen (which is a companion tool to this
book). Both tools use the metadata to generate individual C functions to build
a binary CTF “packet” for each particular trace event. The generated file is
then included in the build for the target firmware, and the source code can call
the generated functions to transmit a trace packet in the compact CTF format.
The barectf tool replaced TSDL with YAML as the metadata language (and
it generates a TSDL file for the trace viewer), while the tracegen tool sticks
with TSDL, but adds some extensions to make it more convenient.

In the above flow chart, the reference to “tracegen” could also be barectf. In
fact, when using barectf, the flow is slightly different: the input to barectf
is a YAML file, and it creates a TSDL file (along C source and header files) for
the trace viewer. The “trace viewer” in the diagram may be either BMTrace
(the BlackMagic Trace Viewer, see page 73) or another CTF compatible viewer,
like Trace Compass.

80 Embedded Debugging with the Black Magic Probe

Binary Packet Format
The Common Trace Format sends trace messages in packets. A packet holds
one or more events. An event is basically a single trace message. In practice,
packing multiple events in a packet is only useful if the transport protocol
imposes a fixed or minimum size on packets. For stream-based protocols like
RS232 or SWO (which this book focusses on), a packet holds a single event.

The packet header is optional; it contains a magic value to flag the binary
data as the start of a CTF packet and the stream identifier. More information
about the packet, such as its size and encoding, may follow in the (equally
optional) packet context block.

For each event, an event header is required, because it contains the event
identifier (plus possibly a timestamp for the event). The “event fields” block,
at the tail of the event, holds any additional parameters that the event has.
For example, if you trace a temperature sensor, the event name could be
“temperature” and the single field the value in degrees Celsius or Fahrenheit
(or Kelvin, for that matter). The “stream context” and “event context” blocks,
are usually not relevant for embedded systems. The stream context holds
data that applies to all events in the stream, whereas the event context has
data that is specific to the event.

Which of the optional headers you should include in the packet depends in part
on the transfer protocol. If it is packet-based, like USB or Ethernet, you may
choose to omit the packet header, but instead include a packet context with
the size of that packet. If, on the other hand, it is a byte stream, like RS232 or
SWO, the packet header is as good as mandatory, while the package context
is of little use.

A Synopsis of TSDL
The Trace Stream Description Language uses a syntax inspired by the C typ-
ing system. It will therefore be familiar to most embedded systems’ develop-
ers. The full specification of this declaration language is on the DiaMon site,
see the chapter Further Information on page 131 for a link.

A minimal example for a specification file is below. It defines a single event
called “peltier-plate,” with a field called “voltage” of type “unsigned char.”

Embedded Debugging with the Black Magic Probe 81

event {
name = "peltier-plate";
fields := struct {

unsigned char voltage;
};

};

Neither a packet header nor an event header are defined; therefore, these
will not be present in the byte stream. Since the size of the single field is a
byte, when the byte stream is:
18 1A 1B

it will be translated by the trace viewer to the following three events:
peltier-plate: voltage = 24
peltier-plate: voltage = 26
peltier-plate: voltage = 27

Merely a single byte needs to be transmitted for a descriptive parametrized
event, it does not get much more compact than that. However, this is an
exceptional case. When there is more than one event, an event header is
needed so that the various events can be distinguished. This leads to the
need for a packet header as well: to determine the function of each byte in a
byte stream, one must know its position in the packet definition, and therefore
one must know where the packet starts in the byte stream.
The following snippet addresses those issues. It defines a packet header in
the trace section and an event header in the stream section.
trace {

major = 1;
minor = 8;
packet.header := struct {

uint16_t magic;
};

};
stream {

event.header := struct {
uint16_t event.id;

};
};
event {

id = 0;
name = "peltier-plate";
fields := struct {

unsigned char voltage;
};

};

82 Embedded Debugging with the Black Magic Probe

event {
id = 1;
name = "temperature";
fields := struct {

uint16_t degrees;
};

};

An example of a byte stream that matches the above trace description is:

The trace viewer would display the two trace messages:

peltier-plate: voltage = 24
temperature: degrees = 38092

In tracegen, types like uint16_t (as used in the above example) are prede-
fined. When using Babeltrace or another system, you may need to define
these types yourself. This can be done with typedef, in the same way as in
C, or with the more comprehensive typealias. The typealias construct al-
lows you to set the size of the variable unambiguously, as well as any scaling
(“fixed-point” representation), and in which base the number must be dis-
played (decimal, hexadecimal, binary). The snippet below shows the changes
to the “temperature” event.

typealias integer {
size = 16;
scale = 1024;
signed = false;

} := fixed_point;

event {
id = 1;
name = "temperature";
fields := struct {

fixed_point degrees;
};

};

Embedded Debugging with the Black Magic Probe 83

When the event for the temperature sensor is changed to a scaled integer (6
bits integer part, 10 bits fractional part, or a scaling factor of 210), the byte
stream C1 1F 01 00 CC 94 would be displayed as:

temperature: degrees = 37.199

TSDL knows the standard C types char, int, short, long, float & double,
along with their unsigned variants. It also inherits the annoyance of C that
the size and byte-order (“endianness”) of these types are implementation-
dependent. The tracegen utility uses the following defaults:
char 8-bits, signed
int 32-bits, little-endian
short int 16-bits, little-endian
long int 32-bits, little-endian
float single precision IEEE-754, 32-bits
double double precision IEEE-754, 64-bits
enum “int”-size (so 32-bits by default).

The tracegen utility also predefines the most common “fixed width” integer
types typically found in stdint.h, like int16_t and uint32_t. All predefined
types can be overruled (with a typealias), if so desired.

For zero-terminated text strings, you use the special type “string” in TSDL.
The tracegen utility converts it to “const char*” in the trace support files
that it generates, see page 80. The default encoding for strings is UTF‑8;
though you can set the encoding to ASCII, this is rarely useful —UTF-8 is
fully compatible with plain ASCII, and for extended ASCII you would need to
know which codepage to use for the upper 128 characters (you cannot set the
codepage in TSDL).

For general-purpose trace message output, you could therefore create a def-
inition like the one below:
event debug_message {

fields := struct {
string msg;

};
};

This creates a function that just transmits a message in a zero-terminated
string, and that message can be about anything. If you are used to “printf”-
style tracing (or methods derived from that), it might be tempting to imple-
ment that as the only event and call it from everywhere with pre-formatted
strings. However, this does away with the principal advantage of CTF: effi-
ciency, due to a compact encoding. In other words, if you are using CTF in
this way, it might not be worth the trouble to use CTF at all.

84 Embedded Debugging with the Black Magic Probe

General structure
At the global level are the declarations of the trace context, the streams,
the events, plus any type definitions. The trace context includes the packet
header; each stream declaration includes an event header; and each event
may contain a declaration of one or more fields. In the generated C code,
each event declaration is translated to a function, and the fields are trans-
lated to parameters.

Every declaration starts with a keyword, like trace, stream or event. The def-
inition of the attributes of the declaration then follow between curly braces:
the declaration block. For the stream and event keywords, a name may option-
ally be present; this is the name of the stream or the event (this is a tracegen
extension).

Trace context
The trace context is a block at the global level, that is introduced with the
trace keyword. It may contain the following fields inside its declaration block:
major Major version of the CTF specification.
minor Minor version of the CTF specification.
version The version in “major.minor” format; the current version is

1.8. This is a tracegen extension, and it can be used as an
alternative to the major and minor fields.

uuid The UUID (in string format) may be used to ensure that a
received packet matches the metadata file (the UUID should
then also be included in the packet header).

byte-order Either le or be for Little-Endian and Big-Endian respectively.
Little-Endian is the default.

packet.header The declaration of the packet header, see the next section.

See the snippet on page 82 for an example of a trace context specification.

Packet header
The packet header is nested inside the trace context (the packet.header
structure). It contains the type definitions for one or more of the following
fields (in any order):
magic Must be declared as a 1-byte, 2-byte, or 4-byte unsigned

integer.
The purpose of this field is to mark the start of a packet in a
stream of bytes. A longer magic value gives a more reliable
detection of the start of a packet, at the cost of more bytes
being transmitted. A 2‑byte integer is a common compromise.

Embedded Debugging with the Black Magic Probe 85

uuid A user-supplied identifier, used to make sure that the byte
stream of the traces matches the definitions in the metadata
(the TSDL file). Due to its heavy cost in overhead (16 bytes
added to every packet), its use is not recommended for
embedded systems.

stream.id A 1-, 2-, or 4-byte integer with the stream number.
Redundant if the trace information uses only a single stream;
also redundant for SWO tracing when less than 32 streams
are used (because the stream ID is mapped to the SWO
channel).
This field may also be called “stream id” for compatibility
with other CTF implementations.

See the snippet on page 82 for an example; the packet.header specification
is inside the trace context block.

Stream Declaration
A trace specification may contain one or more streams. Since we need to
include a unique ID for each event, and this ID is declared in the event header,
which in turn is declared in a stream. . . there is typically at least one stream
declaration.

The stream declaration is a block at the global level, that is introduced with
the stream keyword. It may contain the following fields:
id The unique numeric identifier for the stream. Both tracegen

and barectf can auto-number streams, so this field is
optional.

name A unique name for the stream. This is a tracegen extension.
event.header The declaration of the event header, see below.

If there is only a single stream, it needs neither an ID nor a name. However,
in practice, the event.header field should always be present.

When using tracegen, the name of the stream may also appear between the
keyword stream and the opening brace “{.” For example, the definition:
stream PIDcontroller {

/* other fields */
};

is equivalent to the regular form:
stream {

name = PIDcontroller;
/* other fields */

};

86 Embedded Debugging with the Black Magic Probe

Event header
The event header is nested inside the stream declaration (the event.header
structure). It contains the type definitions for one or more of the following
fields:
event.id A 1-, 2-, or 4-byte integer with the event ID. This field may

also be called “id” for compatibility with other CTF
implementations.

timestamp A 4-byte or 8-byte timestamp for the event. The timestamp
is linked to the definition of a clock in the TSDL file (see
Timestamps further down on this page.

Event Declaration
Event declarations are converted to C functions that send trace packets by
the utilities tracegen and barectf. An event declaration includes the event
name and parameters, plus optionally the stream it is part of and attributes.
id The unique numeric identifier for the event. Both tracegen

and barectf can auto-number streams, so this field is
optional.

name A unique name for the event.
stream.id The numeric ID of the stream that the event belongs to.

Redundant if the trace information uses only a single stream.
When using tracegen, you may also specify the stream name
rather than the numeric ID.
This field may also be called “stream id” for compatibility
with other CTF implementations.

fields The declaration of a structure for the parameter names and
types (if any).

attribute Optional GCC attributes that will be included on the C
function that tracegen generates.

The event name and (if relevant) the stream name, may be put between the
event keyword and the opening brace “{” of the declaration. If both a stream
name and an event name are present, the two should be separated with a
double colon (“::”).

Timestamps
Timestamps must be linked to a clock. This takes two parts: the definition of
a clock and the definition of a type that references this clock. The timestamp
is then defined as that type.

Embedded Debugging with the Black Magic Probe 87

clock {
name = cycle_counter;
freq = 1000000000; /* frequency, in Hz */

};

typealias integer {
size = 64;
signed = false;
map = clock.cycle_counter;

} := tickcount_t;

stream {
event.header := struct {

uint16_t event.id;
tickcount_t timestamp;

};
};

There are more (optional) fields in the clock specification, specifically for
synchronizing various clocks in a heterogeneous tracing environment, but
these are skipped here. The new type tickcount_t maps to this clock, and
the timestamp field in the event header is defined as a tickcount_t type.
Following the chain backward, the timestamp field is now linked to the clock
“cycle_counter.”
Instead of having the target transmit the time stamps of every event, we rec-
ommend that a trace viewer displays the timestamp of when the trace pack-
ets are received (and that the timestamp is omitted from the event header).
The time stamp of the reception is less accurate (due to latencies and jitter in
the transmission protocol), but accuracy in the timestamps is usually only re-
quired for specific events: in those events, the timestamp can be transmitted
as a parameter (an “event field”).

Scaling up: multiple streams, many events
When there are many trace events or multiple streams involved, a few short-
hand notations exist to make maintenance of the metadata easier. When there
are multiple streams, each stream should have a unique ID and each event
(which should also have a unique ID) must indicate which stream it belongs
to.
The tracegen utility extends TSDL by allowing a stream to have a name, so
that an event can identify its stream by its name rather than a numeric con-
stant. It also supports automatic numbering of streams and events (barectf
also supports auto-numbering). For brevity in the TSDL file, the names of a
stream and of an event can be placed immediately following the stream or
event keywords, see the snippet below for examples. In the case of an event,

88 Embedded Debugging with the Black Magic Probe

the name of the stream may be prefixed to the event name, with a double
colon between the two names.
Below is the example from page 82, extended with a stream name and using
the shorthand notations.
trace {

version = 1.8;
packet.header := struct {

uint16_t magic;
uint8_t stream.id; /* redundant with SWO */

};
};

typealias integer {
size = 16;
scale = 1024;
signed = false;

} := fixed_point;

stream cooler {
event.header := struct {

uint16_t event.id;
};

};

event cooler::”peltier-plate” {
fields := struct {

unsigned char voltage;
};

};

event cooler::temperature {
fields := struct {

fixed_point degrees;
};

};

This snippet defines a stream “cooler” and the events “peltier-plate” and
“temperature,” both linked to stream “cooler.” The name “peltier-plate”
is between quotation marks, because it contains a “-” character. You may
enclose all identifiers in quotation marks, but it is not needed if a name only
contains letters, digits and “_” characters (like C identifiers).
Since there is only a single stream in this example, giving the stream a name
and referencing its name explicitly in the events is actually redundant. The
stream could equally well be anonymous, and the “cooler::” prefix could
then be omitted from the event specifications.
When there is a single stream, the stream.id field in the packet.header struc-
ture is usually redundant. With SWO tracing, it is also redundant in the case

Embedded Debugging with the Black Magic Probe 89

of multiple streams, because the stream ID is mapped to the SWO channel.
The ID therefore does not have to be repeated in the packet header. Note
that you are limited to 32 streams in this case.

Note that these shorthand notations are specific to the tracegen and BM-
Trace/BMDebug utilities. When using a different trace viewer, the basic TSDL
syntax (as specified on the site of the DiaMon workgroup) should be used.

Generating Trace Support Files
When running the tracegen utility on the metadata file, it generates a C source
and a C header file. These files contain the definitions (prototypes) and the
implementations of functions, and each of these functions creates and trans-
mits a packet for an event.

For example, when the snippet on page 89 is saved in a file with the name
“peltier.tsdl,” you can run:
tracegen -s peltier.tsdl

The two files that are created, are named trace peltier.c and trace peltier.h.
These contain the implementation and declaration of two functions (because
there are two events defined in the TSDL snippet):
void trace_cooler_peltier_plate(unsigned char voltage);
void trace_cooler_temperature(fixed_point degrees);

The function names contain both the name of the stream and the names of
the events. If the stream were anonymous, that part would not be present
in the function names either. Any characters that are not valid for use in C
identifiers are replaced by an underscore. This happened with the event name
“peltier-plate” for example: in the C function name, the “-” is replaced by
a “_.”

The “-s” option to tracegen makes it generate code for SWO tracing. When
you would use the Common Trace Format for tracing over an RS232 line (or
TTL-level UART), this option is not needed.

Also note how the types of the function arguments are copied from the meta-
data file into the C functions. Your source code should define a fixed_point
type that matches the definition in the metadata. The alternative is to use the
“-t” option on tracegen, in which case it will always attempt to translate the
type in the meta data file to a basic C type.
tracegen -s -t peltier.tsdl

The above call would generate the following function prototype for the tem-
perature event:

90 Embedded Debugging with the Black Magic Probe

void trace_cooler_temperature(unsigned short degrees);

The function prototypes and implementations in the source and header files
are wrapped in conditional compiled sections that test for the NTRACE macro.
If the NTRACE macro is defined, the functions are disabled. Thus, if you need to
build a release version of the firmware without any tracing functions, rebuild
all code with a definition of NTRACE on the compiler command line.
The tracegen utility has a few more options. To see a summary, type:
tracegen -?

When integrating tracegen with Make, note that the output files have the base
name of the input file, but with “trace_” prefixed to it. That is, if the input
file is peltier.tsdl, the output are the files trace peltier.c and trace peltier.h. An
inference rule to match this could look like:
trace_%.c : %.tsdl

tracegen -s -i:stdint.h $<

Integrating Tracing in your Source Code
The tracegen utility generates prototypes and implementations for transmit-
ting trace events, as was shown in the previous section. When integrating
this code in your project, one or two additional functions need to be provided
by your code.
void trace_xmit(int stream_id, const unsigned char *data, unsigned size);
unsigned long long trace_timestamp(void);

The above example assumes that you have run tracegen with the “-s” op-
tion on the TSDL file. Without the “-s” option, the definition of trace_xmit
lacks the stream_id parameter (the stream ID would instead be present in the
packet header).
The task of the trace_xmit function is to truly transmit the data over a kind
of port or interface. For SWO tracing, this would be an adaption of the trace
function on page 65, see below:
void trace_xmit(int stream_id, const unsigned char *data, unsigned size)
{

if ((ITM->TCR & ITM_TCR_ITMENA) != 0UL && /* ITM tracing enabled */
(ITM->TER & (1 << stream_id)) != 0UL) /* ITM channel enabled */

{
/* collect and transmit characters in packets of 4 bytes */
uint32_t value = 0, shift = 0;
while (size-- > 0) {

value |= (uint32_t)*data++ << shift;

Embedded Debugging with the Black Magic Probe 91

shift += 8;
if (shift >= 32) {

while (ITM->PORT[channel].u32 == 0UL)
{} /* null statement */

ITM->PORT[channel].u32 = value;
value = shift = 0;

}
}
/* transmit last collected characters */
if (shift > 0) {

while (ITM->PORT[channel].u32 == 0UL)
{}

ITM->PORT[channel].u32 = value;
}

}
}

The trace_timestamp function returns a timestamp, which is then transmitted
as part of the event header. The return type of this function depends on the
declaration of the clock in the TSDL file, see page 87. If the event header
does not include a timestamp, there is no need to implement this function (as
it will not be called).

Mixing Common Trace Format with Plain Tracing
While the benefit of compactness of Common Trace Format is clear, it adds
overhead in the programming effort. Instead of just calling trace() with a
quick message as a parameter, the programmer now has to spell out the de-
tails of the trace message, including any parameters, in a separate TSDL file,
and run another tool to create a C file that must be linked with your code.
It is more work, and this extra work is worth it for the trace messages that
you plan to keep in the code, for regression testing and quality control. For a
quick throw-away test, however, this overhead stands in the way.
Fortunately, the two approaches can be mixed when using SWO tracing. A
CTF trace message belongs to a stream, which maps to a channel (or stimulus
port) of the ITM (Instrumentation Trace Macrocell), see SWO Tracing on page
65. The trace viewer BMTrace (and the trace view in the BMDebug front-end)
use the criterion that if a packet is received on a channel that is present in the
TSDL file as a stream, that packet is decoded as CTF. Otherwise, the packet
is assumed to contain plain text.
Hence, it suffices to reserve a channel for non-CTF (plain text) trace packets.
A channel which you never use in TSDL files for stream IDs. Channel 30 is
a pragmatic choice, because channel 31 is regularly reserved by an RTOS
for tracing and profiling, and auto-numbering of stream IDs by tracegen or
barectf starts at 0.

92 Embedded Debugging with the Black Magic Probe

Applications for Run-Time Tracing
When it comes to where and how to use run-time tracing, the application that
immediately springs to mind is to print out the program state, or the value
of variables, at specific places in the code. This is the embedded equivalent
of “printf-style” debugging. Run-time tracing has a wider scope than this,
however.

Code Assertions
The function of an assertion is to display an error message and abort the pro-
gram when its parameter evaluates to false. The goal of an assertion, how-
ever, is to always sit silent, because if it fails (and prints the error message),
there is a bug in your code.

Without going into details (see the bookWriting Solid Code by Steve Maguire1

for that), note that assertions should therefore not replace error checking.
You put assertions in your code to test things that you know must be true. . .
provided that the code was called with the correct input parameters, but of
which you know that these were checked by the caller. The answer to the
question of why on earth you would test what you already know to be true, is
that you may not know what you think you know.

In desktop software, the use of assertions is mainstream, because their use is
straightforward, their presence declares pre-conditions, post-conditions and
invariants in the code (as an informal expression of the formal specification),
and it combines well with unit testing. In embedded development, assertions
are less commonplace, and the reason (or at least one of the reasons) is that
embedded systems lack a universal console (display) to print the “assertion
failed” messages to.

Run-time tracing offers an alternative to the console. Of the methods de-
scribed in chapter Run-Time Tracing on page 60, semihosting has the advan-
tages that it is always available when running under a debugger, and it re-
quires no additional set-up in the debugger or debug probe. The relative low
performance of semihosting is not an issue: an assertion only sends output
when it fails —when there is a bug.

There are a few pitfalls in the use of assertions. The most important one is
that an assertion should not have a side effect. Changing a variable inside the
expression of an assertion is right out of the question, but C functions with
side effects, like strtok() should be avoided inside an assertion as well. Apart

1 Maguire, Steve; Writing Solid Code; Microsoft Press, 1993; ISBN 978-1556155512; or the
second edition by Greyden Press, LLC, 2013; ISBN 978-1570740558.

Embedded Debugging with the Black Magic Probe 93

from that, lengthy operations carry a risk as well, especially in time-sensitive
or performance-critical code. Ideally, an assertion should take negligible time
(and resources) for testing its condition.

Assertions grow the code size; especially the default implementation of the
assert macro grows the code because it adds the expression and the filename
that the assertion occurs in as strings to the code. For desktop programs,
this is a minor issue, because desktop workstations and laptops have ample
memory, but embedded systems are regularly quite constrained. In embedded
software, it is common to re-implement the assert macro so that it is more
economical with code space.

A first step is to eliminate the expression as a string. The filename and
line number are sufficient to locate the expression that caused the “asser-
tion failed” notification; duplicating the expression that failed, within that
notification is redundant. Speaking of filenames, each time you add another
assert() in a source file, the filename is stored as a string literal. You will
want to merge these duplicate strings, so that only a single copy is stored
and all assert macros reference that single copy. The GCC option to do this
is -fmerge-all-constants.

The filenames can also be eliminated altogether, by printing the address of
the error location, instead of the filename and line number. This approach
reduces overhead to a minimum. Implementations of assertions typically have
two parts, a conditionally defined macro and a function that is called when
the assertion fails.
#define assert(condition) \

if (condition) \
{} \

else \
assert_fail()

This macro implements assert as a statement, as opposed to the standard C
library that implements it as a conditional expression. The rationale is that
this allows the GCC compiler to catch unintentional assignments in the con-
dition; the standard implementation of assert stays silent when you write
“assert(var = 1),” even though an assignment inside an assert is always
wrong. The “if” statement has both then and else parts (with the then part
as an empty statement) in order to avoid a dangling-else problem.

The core functionality of the assert is implemented in the assert_fail() func-
tion. There is only a single implementation of this function, whilst there are
potentially many invocations of the assert macro sprinkled throughout your
code. Therefore, it saves code space to let the assert_fail() function deter-
mine the address of the assertion failure, rather than passing it as a parameter
to assert_fail().

94 Embedded Debugging with the Black Magic Probe

__attribute__ ((always_inline)) static inline uint32_t __get_LR(void)
{

register uint32_t result;
__asm__ volatile ("mov %0, lr\n" : "=r" (result));
return result;

}

static void addr_to_string(uint32_t addr, char* str)
{

int i = sizeof(addr) * 2; /* always do 8 digits for a 32-bit value */
str[i] = '\0';
while (i > 0) {

int digit = addr & 0x0f;
str[--i] = (digit > 9) ? digit + ('a' - 10) : digit + '0';
addr >>= 4;

}
}

__attribute__ ((weak)) void assert_abort(void)
{

__BKPT(0);
}

void assert_fail(void)
{

register uint32_t addr = (__get_LR() & ~1) - 4;
char buffer[] = "Assertion failed at *0x00000000\n";
addr_to_string(addr, buffer + 23);
trace(buffer);
assert_abort();

}

The above snippet implements assert_fail(), plus three support functions.
The first thing assert_fail() does is to get the value of the Link Register,
which holds the address that assert_fail() returns to (or that it would return
to). That address points behind the call to the function, which is why the
size of one instruction is subtracted from it. The lowest bit is also cleared,
because that bit is a flag for the ARM Cortex Thumb mode. This address is
then converted to ASCII and sent out as a trace message.

The last action of assert_fail() is to call assert_abort(). The default imple-
mentation is a software breakpoint, but it can be overridden. Because of the
“weak” linkage attribute on the default implementation of assert_abort(), it
is overruled by a user-defined function with the same name. The intended
purpose of assert_abort() is to reset all peripherals to a safe state. If the as-
sertion is inside embedded code for a 3D printer, for example, assert_abort()
would stop all fans and motors and shut heating off.

Embedded Debugging with the Black Magic Probe 95

While on the subject, __BKPT() is a CMSIS macro. Other microcontroller sup-
port libraries will likely have a similar function for software breakpoints. Oth-
erwise, a simple implementation for GCC is:
#define __BKPT(value) __asm__ volatile ("bkpt "#value)

The trace() function in assert_abort() is a placeholder; it should be replaced
by a function that does the actual output of the strings, by the method of your
choosing.
The last step is to look up the filename and line number for an address, with
help of symbolic information. When the code is loaded in GDB, this infor-
mation can be obtained with the info command. Note that the asterisk is
necessary.
(gdb) info line *0x08000505

On the command line, you can use the utility addr2line to get the filename
and line number from an address (on a typical toolchain for the ARM Cortex,
the full name may be arm‑none‑eabi‑addr2line).
arm-none-eabi-addr2line -e blinky.elf 0x08000505
d:\Tools\blinky\blinky.c:168

The BMDebug front-end (page 50) automatically looks up file and line informa-
tion for messages that are printed through semihosting, when those messages
contain an address as a hexadecimal number and with an asterisk in front. In
particular, when the embedded host writes the following via semihosting:
Assertion failed at *0x08000505

The BMDebug front-end will display it in its semihosting view as:
Assertion failed at blinky,c:168

Tracing Function Entry and Exit
When your code runs in a debugger and halts at a breakpoint, quite often
one of the things you want to find out is how you got there: the backtrace
command is for that purpose. However, when a trace message pops up, the
code doesn’t halt, and you don’t have the context of the message.
The solution is to trace all entries to all functions, as well as exits from them.
The GCC compiler has a command-line option to instrument function entries
and exits with a call to functions that you must implement:
-finstrument-functions

This option inserts a call to an “entry” function at each start of a function, and
another call to an “exit” function just before the return. A template for these
functions is:

96 Embedded Debugging with the Black Magic Probe

__attribute__((no_instrument_function))
void __cyg_profile_func_enter(void *this_fn, void *call_site)
{

/* ... */
}

__attribute__((no_instrument_function))
void __cyg_profile_func_exit(void *this_fn, void *call_site)
{

/* ... */
}

The first parameter of both functions is the address of the function; the second
the address of the function that made the call. Both these addresses can
be looked up with the symbolic information, as was covered in the previous
section on the assert macro.
The entry and exit functions themselves should not be instrumented, to avoid
unbounded recursion. The same applies to any function called from the entry
and exit functions —including inline functions. To avoid a function from being
instrumented, you set the attribute “no_instrument_function” on it, as was
done in the preceding snippet.
In addition to the attribute specifications in the source code, GCC also has
command line options to block instrumentation for specific functions or for all
functions in specific files, see -finstrument-functions-exclude-file-list
and -finstrument-functions-exclude-function-list in the GCC documen-
tation.
The implementation of the entry and exit functions will typically be a call to a
function that outputs a trace message. In this particular case, low overhead
is of the essence, and therefore it is particularly suited for the Common Trace
Format (see page 79). If we ignore the call_site parameter (which is techni-
cally redundant, because you will have received an “entry” message for that
caller too), an example implementation for the metadata for the entry and
exit functions is in the snippet below. Note that this is not a complete TSDL
file (e.g. it lacks the definitions of the packet and event headers), but just
the part that declares the events —see the appendix Code Profiling, specifi-
cally the section on Calltree Analysis (page page 101) for a full TSDL file for
function tracing.

typealias integer {
size = 32;
signed = false;
base = symaddress;

} := code_address;

Embedded Debugging with the Black Magic Probe 97

event enter {
attribute = "no_instrument_function";
fields := struct {

code_address symbol;
};

};

event exit {
attribute = "no_instrument_function";
fields := struct {

code_address symbol;
};

};

The main feature of the above code is the definition of the code_address type,
and especially the declaration “base = symaddress” (symaddress may be ab-
breviated to symaddr). This declaration signals that any parameter with this
type is a symbol address. This signals the trace viewer to look the address up
in the symbolic information.
Currently, the BMDebug and BMTrace utilities print the function name instead
of an address, when the “base” for the respective parameter is set to symad-
dress.
The functions generated by tracegen for these TSDL events can now be called
from the cyg profile func enter and cyg profile func exit functions. Tge
events in the above TSDL snippet have a declaration for an attribute, which
is set to “no_instrument_function.” This attribute is copied to the generated
C functions. As an alternative, you can add the option -no-instr on the trace-
gen command line, so that it adds the no_instrument_function attribute to
all generated functions.
tracegen -s -t -no-instr blinky.tsdl

As covered in section Integrating Tracing in your Source Code (page 91), the C
functions generated from the TSDL file call trace_xmit, a function that must
be implemented by you. That section also gives an example implementation.
When tracing function entry and exit, the trace_xmit function must also have
the no_instrument_function attribute.

98 Embedded Debugging with the Black Magic Probe

Code Profiling
Code profiling is a technique that you use to analyze where the program
spends its time; it identifies the “hot spots” or “cycle-eaters” in the code. With
this knowledge, you can decide where to optimize the code —and whether to
optimize it at all.
Performance optimization is not just about making the code run faster. In-
creasing the efficiency of the code may allow you to reduce the clock fre-
quency of the microcontroller. Since the power consumption of the micro-
controller correlates with the clock frequency, you indirectly reduce power
consumption. This may be especially relevant for battery-powered devices.
The two most common methods for profiling are by instrumentating the code
and by sampling. Section Tracing Function Entry and Exit (page 96) briefly
touched on instrumenting entry and exit of functions. This allows you to pro-
file at a function level: it allows you to measure the time spent in each func-
tion. It does not tell you which loop or computation inside the function is the
hot spot. There are tools to instrument source code such that you get timings
on a source line level. The drawback is that due to the overhead of instru-
mentation, the code runs significantly slower, which can affect the sequence
in which tasks and interrupts run —and this may then give rise to the probe
effect.1

Sampling-based profiling works by sampling the Program Counter (PC) at a
regular interval, and then look up which line in the source code corresponds
with the address. No instrumentation is needed, and the code runs at its
original speed (no slowdown, and therefore no probe effect). On the other
hand, the sampling frequency is typically in the range of a few kHz, whereas
a microcontroller runs at several MHz. A lot of code can run between two
samples. However, if a profiling session runs long enough, it results in a
statistical distribution of where time is spent.

Sampling on ARM Cortex
The ARM CoreSight architecture implements PC sampling in its ITM (Instru-
mentation Trace Macrocell) and DWT (Data Watchpoint & Trace) units. This
means that the sampling is separate from the microcontroller’s arithmetic
and logic unit. Thus, sampling is truly non-intrusive; it does not even incur
the overhead of interrupt processing.
The sampled values are transferred to the debug probe via the TRACESWO
pin and interface. The configuration for profiling therefore has a lot in com-
mon with that for SWO Tracing, see page 65. In particular, the device-specific

1 See also page 79.

Embedded Debugging with the Black Magic Probe 99

configuration for SWO tracing must be performed for profiling as well —see
the various snippets starting on page 68 for details.

Note that, as is the case with SWO tracing, the ARM Cortex M0 and M0+
architectures lack support for profiling.

The generic initialization for profiling is below. This snippet may be com-
pared with the one on page 68; there are only few differences in the set-up
for profiling versus tracing.

void trace_init(int protocol, uint32_t bitrate, uint32_t samplerate)
{

uint32_t clockfreq = (protocol == 1) ? 2 * bitrate : bitrate;
uint32_t divider = CPU_CLOCK_FREQ / (1024 * samplerate);
divider = min((divider > 0 ? divider - 1 : 0), 15); /* clamp in range 0..15 */

CoreDebug->DEMCR = CoreDebug_DEMCR_TRCENA_Msk;

TPI->CSPSR = 1; /* protocol width = 1 bit */
TPI->SPPR = protocol; /* 1 = Manchester, 2 = Asynchronous */
TPI->ACPR = CPU_CLOCK_FREQ / clockfreq - 1;
TPI->FFCR = 0; /* turn off formatter, discard ETM output */

ITM->LAR = 0xC5ACCE55; /* unlock access to ITM registers */
ITM->TCR = (1 << 16) | ITM_TCR_DWTENA_Msk | ITM_TCR_ITMENA_Msk;
ITM->TPR = 0; /* privileged access is off */
DWT->CTRL = DWT_CTRL_PCSAMPLENA_Msk | DWT_CTRL_CYCTAP_Msk |

DWT_CTRL_CYCCNTENA_Msk | ((divider & 0xf) << 1);
}

The above snippet limits the sampling frequency to the microcontroller clock
divided by 1024. You can increase the maximum sampling frequency by a
factor 16 when clearing the CYCTAP bit in the DWT_CTRL register. However, the
maximum SWO bitrate that the Black Magic Probe supports, is the limiting
factor.

Once the set-up is done, the microcontroller starts streaming the sampled PC
addresses to the debug probe, over the TRACESWO pin. Each packet is five
bytes long: a header byte (with a fixed value of 0x17) followed by a 32-bit
address, transmitted low-byte first (see also section TRACESWO Protocol on
page 8).

The BlackMagic Profiler (BMProfile) is a small utility that shows the profiling
results in a bar-graph. On start-up, it initially shows a list of functions, sorted
on sample counts. When you click on a particular function, it shows you the
source code for that function, with the bar graph (and percentages of samples)
for the source lines. Thus, the utility allows for both function level and source
line level profiling. Clicking in the source view returns to the function list.

100 Embedded Debugging with the Black Magic Probe

Like the BMTrace utility, BMProfile can configure the target microcontroller
for profiling through the debug interface. It does not use GDB, but relies on
the Remote Serial Protocol (RSP) to communicate with the target microcon-
troller (similarly as to how GDB communicates with the target). For several
families of microcontrollers, BMProfile can do the device-specific initialization
for tracing & profiling as well. These steps are configurable: if the setting
“Configure Target” is de-activated in the right column of the user-interface,
no device-specific initialization will be done.
Sampled addresses that fall outside the range of the ELF file, or that cannot
be attributed to a function, are collected as “overhead” in the bottom panel
of the right column. Some microcontrollers have “drivers” or support rou-
tines in ROM that firmware code can use, and time spent in these would thus
be collected as “overhead”. Similarly, functions linked in from the run-time
library sometimes are neither included the DWARF information, nor in the
ELF symbol table. When the PC is sampled inside these functions, it is also
collected as overhead.
For further analysis, you can save the collected sample data in CSV format
(comma-separated values).

Calltree Analysis
The screen capture of the BMProfile utility earlier on this page, shows that the
function on top is hash with 16.6% of the MCU time. The total time spent in
a routine, like function hash, is the time that a single run takes, multiplied by
the number of times the routine runs. Thus, the question is, when a function
comes out high in the profiling graph, is it because it runs slowly, or because it

Embedded Debugging with the Black Magic Probe 101

is called so very often. And this is a question that a sampling profiler doesn’t
answer, on its own.

A first step in deeper understanding of the code and where it is spending its
cycles, is to make a calltree of the program. If you are using C, the GNU cflow
program creates calltrees by means of a static analysis of the source code.
A “reverse calltree” generates for each function a list of call sequences that
lead to running that function. This quickly tells you by who each function
is called. The cflow program creates a reverse calltree with the --reverse
command line option:
cflow --reverse dhrystone.c hash.c

When using C++, the situation is less straightforward: cflow does not sup-
port C++ and commercial alternatives, such as Understand by SciTools and
CppDepend by CoderGears, are fairly expensive. Another caveat is that the
static call tree of a program is not necessarily the same as the run-time call
tree. Functions passed as parameters, call-back functions and invocations of
virtual functions are absent from the static calltree.

The alternative is to create a run-time calltree, by running the code while
tracing the function entries and exits. This is the topic of section Tracing Func-
tion Entry and Exit (page 96). That section covered the concept and included
a snippet of a TSDL file that might be used for function tracing. For com-
pleteness, a full (and slightly adapted) TSDL file for tracing functions follows
below.

trace {
major = 1;
minor = 8;
packet.header := struct {

uint16_t magic;
};

};

stream function_profile {
id = 31;
event.header := struct {

uint16_t id;
};

};

typealias integer {
size = 32;
signed = false;
base = symaddress;

} := code_address;

102 Embedded Debugging with the Black Magic Probe

event function_profile::enter {
attribute = "no_instrument_function";
fields := struct {

code_address symbol;
};

};

event function_profile::exit {
attribute = "no_instrument_function";
fields := struct {

code_address symbol;
};

};

This TSDL file creates a stream “function profile” at channel 31 —the channel
reserved for profiling and system tracing. The goal now is to run the same
code while capturing traces with BMTrace (page 73). As you will observe, the
code will run significantly slower, but since the goal is to generate a calltree,
accurate timings are not as relevant. What is relevant, though, is that all
code paths that were executed during the profiling session, are also executed
during the function tracing phase.
After saving the captured trace messages to a CSV file, you can run the call-
tree utility on it to generate a familiar calltree. The calltree utility is another
software utility that comes with this book. Like the cflow utility, calltree can
create both normal calltrees and reverse trees.
calltree -r testrun.csv

There are trade-offs between a static calltree and a run-time calltree. As
stated, a static calltree misses function calls that are computed on run-time:
notably functions called via function pointers and virtual class members. A
run-time calltree includes those functions, but on the other hand it lacks calls
to library functions —as those are not instrumented.

Embedded Debugging with the Black Magic Probe 103

Firmware Programming
As show in chapter Debugging Code on page 31, GDB downloads the code in
the microcontroller as part of the debugging process. This opens the way for
using the Black Magic Probe for small-scale production programming as well.

Using GDB
You can use GDB for uploading code to Flash memory by setting commands
on the command line. The following snippet is a single command broken over
multiple lines, for the Microsoft Windows command prompt (on Linux, replace
the “^” symbol at the end of each line by a “\,” see the second snippet below).
In practice, you would put it in a batch file or a bash script.
arm-none-eabi-gdb -nx --batch ^
-ex 'target extended-remote COM9' ^
-ex 'monitor swdp_scan' ^
-ex 'attach 1' ^
-ex 'load' ^
-ex 'compare-sections' ^
-ex 'kill' ^
blinky.elf

You need to change COM9 to the serial device that is appropriate for your
system, and blinky.elf to the appropriate filename. On Linux, you may use
the BMScan utility to automatically fill in the device name for the gdbserver
virtual serial port:
arm-none-eabi-gdb -nx --batch \
-ex "target extended-remote `bmscan gdbserver`" \
-ex "monitor swdp_scan" \
-ex "attach 1" \
-ex "load" \
-ex "compare-sections" \
-ex "kill" \
blinky.elf

Also see the note on the LPC microcontroller series from NXP regarding the
compare-sections command on page 36.

Using the BlackMagic Flash Programmer
The BMFlash utility is a GUI utility that offers a few additional features over
GDB for firmware programming. The BMFlash utility uses the Remote Serial
Protocol (RSP) of GDB to directly communicate with the Black Magic Probe.

104 Embedded Debugging with the Black Magic Probe

GDB is therefore not required to be installed on the workstation on which you
perform production programming.

The BMFlash utility automatically scans for the Black Magic Probe on start-up,
and connects to it. It also has built-in handling of the idiosyncrasies of the
LPC microcontroller series from NXP (see page 36).

Serialization
BMFlash supports serialization: patching a serial number into the code that
is downloaded to the target, and incrementing that serial number for each
successful download.

The modes that are available for serialization are:
No serialization No serialization is performed.
Address The options for this mode are the name of a section in the

ELF file, and the offset in bytes from that section. The offset
is a hexadecimal value.
The section name is typically “.text” or “.rodata.” If the
section name is empty, the offset is from the beginning of
the ELF file.

Match In this mode, the BMFlash utility searches for a signature or
byte pattern in the original ELF file, and stores another byte
pattern (“prefix”) plus a serial number at that spot.
The “match” string can be an ASCII string, like “$serial$.” It
can also contain binary values, which you specify with \ddd
or \xhh where ddd is a decimal number of up to three digits
and hh is a hexadecimal number of up to two digits (thus,
the codes \27 and \x1b are the same).
When the code \U* appears in the string, a zero byte is

Embedded Debugging with the Black Magic Probe 105

added to the match pattern after each byte. The purpose is
to make matching Unicode strings easier. The code \A*
reverts to single-byte characters.
If a backslash must be matched, it must be doubled in the
match field.
The “prefix” string follows the same syntax as the “match”
string. It is optional; if not present, the serial number is
written from the start of the signature found in the ELF file.
If you want to store the serial number behind the signature
in the ELF file (without modifying the signature), the prefix
string should be set equal to the match string.

The starting serial number itself and its width in characters or bytes are dec-
imal values. The serial number can be stored in one of three formats:
Binary The serial number is stored as an integer, in Little Endian

byte order. The width of the serial number will typically be
1, 2, or 4, for 8-bit, 16-bit and 32-bit integers respectively,
but other field sizes are valid.

ASCII The serial number is stored as text, using ASCII characters.
The number is stored right-aligned in the field size of the
serial number, and padded with zero digits on the left. For
example, if the serial number is 321 and the width is 6, the
serial number is stored as the ASCII string “000321.”

Unicode The serial number is stored as text, using 16-bit wide
Unicode characters. The width for the serial number should
be an even number.

Settings for serialization and other configurations are stored in a file that has
the same name as the target (ELF) file, but with the extension “.bmcfg” to it.

Log file
The BMFlash utility can optionally add a row to a log file for each successful
download. To activate it, set a check-mark in the “Keep log of downloads”
option in the “Options” tab. The log file is in CSV format (comma-separated
values). The filename is the same as that of the ELF file (the file that is down-
loaded to the target), but with the extension “.log” appended.
Each row starts with the date and time of the download. It is followed by
three fields identifying the ELF file: the file date & time, the size in bytes,
and a POSIX checksum. This checksum is actually a CRC32 of the contents of
the file plus the file size. After that, there is an RCS identification string read
from the ELF file (if one was present), and finally the serial number patched
into the code during the download (if serialization is enabled).
The POSIX checksum enables you to distinguish which version of the ELF file
was downloaded. It is calculated over the original ELF file, before patching

106 Embedded Debugging with the Black Magic Probe

a serial number in the code. You can verify whether an ELF file matches the
number in the log file, by running cksum on the ELF file. The utility cksum is a
core utility of Unix and Linux distributions; it has also been ported to Windows
as part of the GnuWin32 project. A self-contained re-implementation of the
cksum utility (with minimal features) is also provided with this book.

The RCS identification string is easier to use as a unique identifier of the code
that was downloaded. It works in combination with a version-control system
and a placeholder for the identification string in the source code. On each
commit, the version-control creates a unique stamp and patches that into the
placeholder in the source code. With the stamp, you can then look up the
matching commit in version-control history.

RCS (Revision Control System) is legacy version-control software, but the for-
mat for the identification strings lives on. A typical string that you would add
to the main source file of your embedded application is:

const char __id[] = "$Revision$";

Whereas RCS used a handful of keywords, BMFlash only supports Id and
$Revision$ (which may be abbreviated to Rev). You must furthermore en-
able keyword expansion in your version-control software, on all source files.
In Apache Subversion, add the “svn:keywords” property to the source files
and add at least the “Id” and/or “Revision” keywords to the list. For git, you
can add the following lines to the .gitattributes file:

*.c ident
*.h ident

Note that git only supports the Id keyword (not $Revision$).

These are not the only solutions (in fact, the above solutions have their short-
comings). When using Subversion, a more reliable scheme is to use the SvnRev
utility as part of the build. The code to add to the main source file changes to
the snippet below:

#include "svnrev.h"
const char __id[] = SVNREV_RCS;

Enabling keyword expansion is not required when using SvnRev. For git, Mer-
curial and Bazaar, an alternative is Autorevision, but which runs only in Linux.
See Further Information on page 131 for links to the various utilities.

As an aside, if you want to check whether a file contains RCS identification
strings, you can use the ident utility. This utility is part of the RCS pack-
age (and of the GnuWin32 project); a self-contained re-implementation is also
provided with this book.

Embedded Debugging with the Black Magic Probe 107

Post-processing
Especially when serialization is active, it may be needed to run a script or
program after each successful download —for example, to print a label with
the serial number. The BMFlash utility supports this via the “Post-process” op-
tion (“Options” tab). If the post-process field holds the name (and path) of an
executable program, this program is invoked after each successful download
with the ELF file and (optionally) the serial number as arguments.

The post-process runs after updating the log file (if the option to log successful
downloads is enabled). A post-process program can therefore extract relevant
fields from the log file —for example, to store the information in a database
that holds more complete information on the device or firmware.

Miscellaneous tools
The Tools button on the bottom row of the utility provides a few additional
commands:

⋄ Re-scan for Black Magic Probes on the USB bus (e.g. for the case that you
launched the utility without first connecting a Black Magic Probe).

⋄ Erase the full Flash memory of the target, see also the notes below.

⋄ Erase the option bytes (on microcontrollers that use option bytes), see the
notes below.

⋄ Activate “code read protection” in the option bytes (on microcontrollers that
support CRP via option bytes).

⋄ Verify the code in the microcontroller against the ELF file (without down-
loading it).

On LPC microcontrollers (from NXP), erasing full Flash memory also clears
“code read protection” (CRP). However, on these microcontrollers, CRP has
also disabled the SW-DP interface on reset or power-up, with the implication
that the Black Magic Probe can no longer access the microcontroller. There-
fore, if you accidentally download code with CRP into your development de-
vice, you must erase the Flash memory immediately, without leaving the BM-
Flash utility and without power-cycling (or resetting) the target device. The
BMFlash utility notifies you when an ELF file has CRP set, upon opening the
ELF file.

The STM32Fxx microcontrollers use option bytes for code protection. Eras-
ing these clears the protection, and by clearing protection, it also erases all
Flash memory. The STM32Fxx microcontrollers need a power-cycle, before
the change in option bytes is picked up. If the target is powered from the
Black Magic Probe, this is handled automatically by the BMFlash utility. When

108 Embedded Debugging with the Black Magic Probe

the target device is self-powered, you should power-cycle it after clearing the
option bytes.
Setting code protection with the BMFlash utility currently only works on mi-
crocontrollers from the STM32Fxx series, and only for RDP Level 1. After set-
ting it, the target needs to be power-cycled for the new values of the option
bytes to be picked up.
Also see the section Reset Code Protection at page 34 for more information.

Embedded Debugging with the Black Magic Probe 109

Updating Black Magic Probe Firmware
At the time of writing, a new version of the Black Magic Probe hardware has
started shipping: version 2.3. The predecessor, “hardware version 2.1,” is
now sold out. The firmware is in continuous development, however, for both
versions 2.3 and 2.1 (and for other platforms as well). Support for more mi-
crocontrollers, as well as new features, are regularly being committed to the
GitHub project. There is therefore good reason to update the firmware of the
Black Magic Probe to either the latest “stable” firmware release (version 1.8.2
at the time of writing), or an up-to-date “development version.”

You can build the latest firmware yourself, but you often do not need to. The
stable releases are available on the GitHub project, and pre-compiled builds
of the development release are also updated each day. See chapter Further
Information on page 131.

An essential step for Microsoft Windows is to complete the set-up for DFU.
See the instructions in Setting up the Black Magic Probe on page 19. As noted
in that section, both the DFU interfaces for normal mode and DFUmode must
be installed.

The next step is to install dfu-util for your operating system. For Microsoft
Windows, download a “binaries” release (see Further Information on page 131
for the download location) and unpack it in a directory of your choice. For
Linux, it is more convenient to use the package manager of your distribution
to get the latest version; for example:

$ sudo apt-get install dfu-util

The options on dfu-util for updating the firmware are (native Black Magic
Probe):

dfu-util -d 1d50:6018,:6017 -s 0x08002000:leave -D blackmagic-native.bin

For ctxLink, use the command below (note the address set with the -s option):

dfu-util -a 0 -s 0x08000000 -D blackmagic-ctxlink.bin

Note that you need to use the specific “ctxLink firmware” for the ctxLink; the
native Black Magic Probe firmware will not run on the ctxLink.

Likewise, the Jeff Probe requires a different address; and similar to the ctxLink
probe, you must get the firmware specifically for the Jeff Probe from the man-
ufacturers GitHub project page. The dfu-util command options for the Jeff
Probe are:
dfu-util -d 1d50:6018,:6017 -s 0x00002000:leave -D blackmagic.bin

110 Embedded Debugging with the Black Magic Probe

On Linux, you may need to run the command with sudo (this depends on
whether a udev rules file has been installed for the Black Magic Probe, see
page 21).

You can check which firmware version you have with the GDB monitor com-
mand (after connecting it as an “extended-remote” target, see also page 26).

(gdb) monitor version
Black Magic Probe v1.8.2, Hardware Version 3
Copyright (C) 2022 Black Magic Debug Project
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>

The BMScan utility also shows the firmware version number (see page 26 for
an example of the output).

The development release of the firmware uses a GitHub hash instead of (or
in addition to) a version number. In the snippet below, it is the hexadecimal
value “0740d92a.”

(gdb) monitor version
Black Magic Probe 0740d92a, Hardware Version 3
Copyright (C) 2022 Black Magic Debug Project
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>

The format of the version number changes from time to time. In more recent
development releases, it looks like the example below, and in this case the
GitHub hash is the hexadecimal string at the end, after the “g”.

Black Magic Probe v1.8.0-1138-g0740d92a, Hardware Version 6
Copyright (C) 2022 Black Magic Debug Project
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>

A drawback of a hash is that they are not monotonically incrementing: a more
recent firmware may have a hash value that is lower than the previous version.
To find out at what position on the commit timeline a particular hash sits, you
have to go to the GitHub project for the Black Magic Probe, and search that
repository for the hash number. Note that you should enter only the hash
number, not the complete version string (and without a “g” prefix, if any).

When GitHub returns the search results, the page will tell you that it couldn’t
find any code that matches the hash (0740d92a in the above example). In the
left column, however, is a list with the topics Code, Commits, Issues, and a
few others. If you click on “Commits” (see arrow in the picture) you will get
a summary of the relevant commit, plus the date of that commit.

Embedded Debugging with the Black Magic Probe 111

112 Embedded Debugging with the Black Magic Probe

Troubleshooting
The first step in troubleshooting is to check whether the Black Magic Probe
has power. When the Black Magic Probe is connected to a USB port, the green
and orange LEDs (labelled “PWR” and “ACT” respectively) should be on. The
ACT LED may be bright or dim, depending on the firmware version. On the
ctxLink, only the ACT LED must be on; the green LED indicates the connection
mode, not “power.”

After having verified that the Black Magic Probe is powered-on, the next steps
depend on the issue that you are having.

Check whether the system detects the probe
The step to check whether the system can find the Black Magic Probe is cov-
ered in section Checking the Set-up, page 26. To summarize, the BMScan
utility shows the interfaces of all probes that it can find. For troubleshooting,
it is of course recommended connecting only a single debug probe at a time;
for the ctxLink, we also recommend to first get the device set up with a USB
connection.
d:\Tools> bmscan

Black Magic Probe [Version: 1.8.2, Hardware Version 3, Serial: 7BB180B4]
gdbserver port: COM9
TTL UART port: COM10
SWO interface: {9A83C3B4-0B99-499E-B010-901D6C2826B8}

The BMScan utility also does a quick test on whether it can open the ports
that it detects, and on the gdbserver port, whether it responds to a version
request. If it indicates “[no access]” after a port (like in the example below),
it has detected the port, but at the same time failed to open it.

$ bmscan

Black Magic Probe [Serial 7BB180B4]
gdbserver port: /dev/ttyACM0 [no access]
TTL UART port: /dev/ttyACM1 [no access]
SWO interface: 1-2:1.5

There are multiple reasons why a serial port cannot be opened. An obvious
one is that the port is already open. On Linux, another common cause is
access rights: a non-root user must be included in the dialout group to access
the ports, see page 22 for more information.

Embedded Debugging with the Black Magic Probe 113

Check whether the probe detects the target
As is common for open-source project, several derivatives of the Black Magic
Probe have emerged. The ctxLink is one of these, and one that offers additional
features. Most derivatives, however, are optimized on cost —by cutting down
on features or quality. Some of these probes do not have sufficient Flash
memory to contain the current Black Magic Probe firmware, others are simple
(FTDI MPSSE-based) protocol interfaces that don’t contain any embedded
firmware at all. To make these low-cost probes work, the firmware of the
Black Magic Debug project can also be built as a desktop application. Thus,
the “firmware” runs on a workstation or laptop, and it communicates with
the debug probe via one of several low-level serial protocols. It was originally
called the “hosted” set-up, but the project now prefers to refer to it as BMA
or BMDA, which stands for the Black Magic (Debug) App.

The relevance, in regard to this chapter, is that the native Black Magic Probe
also supports a low-level serial protocol, and (more importantly), the desktop-
build of the Black Magic Probe firmware offers additional diagnos tics. For the
purpose of troubleshooting, the advice is therefore to run the Black Magic
code on the desktop, while it is connected to the Black Magic Probe hardware
(and while the Black Magic Probe is also connected to a target device).
$ blackmagic -t

The “-t” option displays the information that the utility gathers about the
debug probe and the target. When the target is powered from the Black Magic
Probe, you should also add the “-p” option. The utility has more options that
may be relevant. Use the following command to list them all:
$ blackmagic -h

The output of the “blackmagic -t” command, for the case that no problems
are detected, is similar to the snippet below:
$ blackmagic -t

BMP hosted
for ST-Link V2/3, CMSIS_DAP, JLINK and LIBFTDI/MPSSE

Running in Test Mode
Target voltage: 3.3V Volt
Speed set to 3.2727 MHz for SWD
DPIDR 0x0bb11477 (v1 MINDP rev0)
RESET_SEQ failed
AP 0: IDR=04770021 CFG=00000000 BASE=e00ff003 CSW=03000040 (AHB-AP var2 rev0
Halt via DHCSR: success 01030003 after 1ms
ROM: Table BASE=0xe00ff000 SYSMEM=0x00000001, designer 43b Partno 471
0 0xe000e000: Generic IP component - Cortex-M0 SCS (System Control Space)
(PIDR = 0x04000bb008 DEVTYPE = 0x00 ARCHID = 0x0000)-> cortexm_probe

114 Embedded Debugging with the Black Magic Probe

CPUID 0x410cc200 (M0 var 0 rev 0)
1 0xe0001000: Generic IP component - Cortex-M0 DWT (Data Watchpoint and Trace)
(PIDR = 0x04000bb00a DEVTYPE = 0x00 ARCHID = 0x0000)

2 0xe0002000: Generic IP component - Cortex-M0 BPU (Breakpoint Unit) (PIDR =
0x04000bb00b DEVTYPE = 0x00 ARCHID = 0x0000)

ROM: Table END
*** 1 LPC11xx M0
RAM Start: 0x10000000 length = 0x2000
Flash Start: 0x00000000 length = 0x20000 blocksize 0x1000

One of the first things to look at is the target voltage; it is 3.3V in this example.
The Black Magic Probe uses the voltage on the VREF pin for its voltage level
shifters on the debug pins. When the voltage on the VREF pin is zero, for
example because you did not wire the VREF pin to the target, then the Black
Magic Probe won’t work.

If the target runs on 3.3V, you can power it from the Black Magic Probe by
adding “-p” option on the command line of the blackmagic program (in addi-
tion to “-t”).

The following snippet shows a case where the debug probe cannot find a tar-
get microcontroller:

$ blackmagic -t

BMP hosted
for ST-Link V2/3, CMSIS_DAP, JLINK and LIBFTDI/MPSSE

Running in Test Mode
Target voltage: 3.3V Volt
Speed set to 3.2727 MHz for SWD
Exception: SWDP invalid ACK
Trying old JTAG to SWD sequence
Exception: SWDP invalid ACK
No usable DP found
Can not attach to target 1

You will also get this response when the target voltage is 0V, but that is not
the case here. You should double-check the wiring between the Black Magic
Probe and the target device. You may want to try to repeat the command
again with the “-C” option (for connecting under reset). Other explanations
are:
⋄ The target microcontroller has redefined the SWCLK and/or SWDIO pins,

and hence you need to reset to bootloader mode (see page 28).
⋄ The SWD interface has been disabled altogether —e.g. because code-read

protection is active on an NXP LPC-series microcontroller. See section Re-
set Code Protection on page 34 for details.

Embedded Debugging with the Black Magic Probe 115

Another case that may occur is that the target microcontroller does not yet
appear in the tables of the Black Magic Probe. New microcontrollers are intro-
duced on the market at a quick pace, and software support for them is often a
bit lagging behind. The output for an unsupported microcontroller is similar
to the snippet below (this is a contrived example, the particular microcon-
troller with these designer & part numbers and ID code is, in fact, supported
by the Black Magic Probe):
$ blackmagic -t

BMP hosted
for ST-Link V2/3, CMSIS_DAP, JLINK and LIBFTDI/MPSSE

Running in Test Mode
Target voltage: 3.3V Volt
Speed set to 3.2727 MHz for SWD
DPIDR 0x0bb11477 (v1 MINDP rev0)
RESET_SEQ failed
AP 0: IDR=04770021 CFG=00000000 BASE=e00ff003 CSW=03000040 (AHB-AP var2 rev0
Halt via DHCSR: success 00030003 after 2ms
ROM: Table BASE=0xe00ff000 SYSMEM=0x00000001, designer 43b Partno 471
0 0xe000e000: Generic IP component - Cortex-M0 SCS (System Control Space)
(PIDR = 0x04000bb008 DEVTYPE = 0x00 ARCHID = 0x0000)-> cortexm_probe

CPUID 0x410cc200 (M0 var 0 rev 0)
LPC11xx: Unknown IDCODE 0x2998802b
LPC8xx: Unknown IDCODE 0xfffdff88
1 0xe0001000: Generic IP component - Cortex-M0 DWT (Data Watchpoint and Trace)
(PIDR = 0x04000bb00a DEVTYPE = 0x00 ARCHID = 0x0000)

2 0xe0002000: Generic IP component - Cortex-M0 BPU (Breakpoint Unit) (PIDR =
0x04000bb00b DEVTYPE = 0x00 ARCHID = 0x0000)

ROM: Table END
*** 1 Unknown ARM Cortex-M Designer 43b Partno 471 M0

For the team maintaining the Black Magic Probe firmware (on GitHub), there
are several important values in this dump. The microcontroller is detected as
a Cortex-M0 architecture. The numeric ID for the designer is 43b (hexadeci-
mal) and the ID for the part is 471. These values are not conclusive: the value
43b is the code for ARM Ltd., for example —but the part is from NXP.
The information on the architecture, the designer and part IDs is sufficient to
probe deeper. As can be seen from the output, the Black Magic Probe tries to
match microcontrollers in the LPC1100 and LPC800 series. Both attempts fail,
but the IDCODE values are important. In this particular case, the microcon-
troller being tested was an LPC11U14, and many microcontrollers from that se-
ries are already supported. It may be sufficient to add the number 0x2998802b
to a table or list of known codes that are matched against.1

1 As stated earlier: this is a contrived example. The given code (0x2998802b) is already in the
list for the LPC11** series. I used a sabotaged build of the firmware to get this output.

116 Embedded Debugging with the Black Magic Probe

When running the Windows build of the blackmagic utility, you may need to
set the “-d” option with the COM port of the Black Magic Probe, in addition to
the other options.
$ blackmagic -t -d com9

Whether or not this option is needed depends on the build options for the
utility —more specifically, it depends on which debug probes the utility is built
to support. When the blackmagic utility is configured (during compilation) to
only support the Black Magic Probe (or 100% compatibles like the ctxLink),
this option is not needed; when the utility is configured to support additional
debug probes (e.g. ST-Link V2 or V3, or CMSIS-DAP), you will need to set the
COM port for the Black Magic Probe.

How to get the hosted blackmagic utility?
When you come to the point that you want to run the blackmagic program for
troubleshooting, the first hurdle in doing so is. . . that you don’t have it. The
hosted build is not part of the official releases.
If you are running Linux, you can get a daily build from GitHub. An executable
build of the “hosted” firmware is part of the daily builds.
On Microsoft Windows, you have a few options. One is to set up Linux in
a virtual machine, like VirtualBox, and run the Linux version of the black-
magic utility in it. Alternatively, you can set up Windows’ versions of GCC
(we recommend Mingw-w64) together with a Unix-like environment, such as
Cygwin or msys2. Sid Price has documented the steps for Cygwin, see Further
Information on page 131 for a link.
Another option is to download a pre-build version of the blackmagic utility for
Microsoft Windows. For your convenience, an executable blackmagic utility
for Microsoft Windows is included in the software package that is provided
with this book (which is also on GitHub) —again, see Further Information on
page 131 for a link. The drawback is that the software for this book is updated
when there is a new edition ready. In other words, the pre-compiled black-
magic utility that is distributed with this book may not be the latest version.

Target scan hangs
When the “monitor swdp_scan” command appears to hang, this may indicate a
problem in the communication between the Black Magic Probe and the target.
A typical situation is:
(gdb) monitor swdp_scan
Target voltage: 3.3V

Embedded Debugging with the Black Magic Probe 117

Neither does the list with available targets appear, nor is there an error mes-
sage. The “(gdb)” prompt does not appear either —until you break the con-
nection between your workstation and the Black Magic Probe.
The target voltage is measured by the Black Magic Probe itself; this first part
of a scan does not involve communication with the target. The second phase
of a scan, however, is to query the target using the SW-DP protocol. More
pointedly, the target scan is typically the first command that involves com-
munication with the target.
The hang-up is the result of the target responding, but responding in a way
that confuses the debug probe or GDB. This can caused by the wiring between
the Black Magic Probe and the target: a flaky connection, noise picked up by
long wires, reflections (transmission line effects), . . . So the first step is to
check connections and whether there is a noise source (like, for example, a
noisy power supply that powers the target).
If the above step does not (reliably) fix the problem, an alternative is to reduce
the speed of the SW-DP protocol, using the “monitor frequency” command.
On start-up, the SWCLK clock runs at approximately 3.5 MHz. You can lower
this with the following command:
(gdb) monitor frequency 2M
Max SWJ freq 00225510

This sets the SWCLK frequency to roughly 2 MHz —roughly, because the slow-
down is done by inserting “wait states” in the toggling of the SWCLK pin, and
those wait states are in discrete amounts. The value that the command re-
turns, 00225510 in the above example, is in hexadecimal in firmware 1.8.
You need to run the “monitor frequency” command before an “swdp_scan”, of
course.

GDB crashes on “attach”
If you get either of the following errors on attaching to the target, this relates
to a bug in GDB versions 11.1, 11.2 and 12.1.
(gdb) attach 1
../../gdb/remote.c:7979: internal-error: ptid_t remote_target::select_thread_for_ambi
guous_stop_reply(const target_waitstatus*): Assertion `first_resumed_thread != nullptr'
failed.

A problem internal to GDB has been detected,
further debugging may prove unreliable.
Quit this debugging session? (y or n) [answered Y; input not from terminal]

This is a bug, please report it. For instructions, see:
<https://www.gnu.org/software/gdb/bugs/>.

118 Embedded Debugging with the Black Magic Probe

or
(gdb) attach 1
Attaching to program: blinky, Remote target
../../gdb/thread.c:72: internal-error: thread_info* inferior_thread(): Assertion
`current_thread_ != nullptr' failed.

A problem internal to GDB has been detected,
further debugging may prove unreliable.

The GDB bug affects communication with gdbserver stubs in general, so it
is not specific to the Black Magic Probe or any particular microcontroller. A
patch has been available for some time, but at the time of writing, there is no
confirmation that this patch will be included in the 12.2 release.
While waiting for a fix, there are two workarounds:
⋄ revert to GDB version 10;
⋄ update the Black Magic Probe firmware to 1.8.2 (or later), which contains a

bypass for the GDB issue.

Failure to erase Flash memory
When the target microcontroller is from the STM32F series, the following
error on a load command is likely due to readout protection” (RDP).
(gdb) load
Error erasing flash with vFlashErase packet

For more information, see Reset Code Protection on page 34.

Spying on the communication
GDB communicates with the Black Magic Probe via the Remote Serial Protocol
(RSP). This is largely a text-based protocol. GDB lets you view the commands
and responses of this protocol with the following command:
(gdb) set debug remote 1

The strings of RSP are intermixed with the other console output of GDB. They
are easy to recognize, though: each string is prefixed with “Sending packet:”
or “Packet received:.” In RSP, binary data, and monitor commands and their
replies, are transmitted in encoded form. The strings that GDB prints in its
console are the data as it transmits it to the Black Magic Probe; that is, in
encoded form.
For example, the snippet below shows the output of a monitor command. The
monitor command itself is translated to the $qRcmd command; its parameter
(the string “tpwr enable”) is encoded as two hexadecimal digits per character.

Embedded Debugging with the Black Magic Probe 119

The reply starts with the letter “O” and then a string that is encoded in the
same way. The decoded message (“Enabling target power”) is printed next.

(gdb) set debug remote 1
(gdb) monitor tpwr enable
Sending packet: $qRcmd,7470777220656e61626c65#07...Ack
Packet received: O456e61626c696e672074617267657420706f7765720a
Enabling target power
Packet received: OK

The Remote Serial Protocol is described in detail in the GDB manual, “Debug-
ging with GDB.” See Further Information on page 131 for a reference.

How to Reset the Black Magic Probe
Tracing and debugging may leave the Black Magic Probe or the USB drivers in
a state that they cannot recover from. For example, when resetting a target
just when it was transmitting data over TRACESWO, the TRACESWO capture
on the Black Magic Probe may get stuck in an error state. We have also expe-
rienced that Microsoft Windows keeps flagging the virtual COM port used by
gdbserver as “in use” even though GDB has already ended.

A reset of the Black Magic Probe fixes these issues. However, the Black Magic
Probe neither has a “Reset” button, nor a command for that purpose.2 Yet, you
can reset the Black Magic Probe without physically removing and re-inserting
it, with the help of DFU. DFU is the protocol for updating the firmware of
the Black Magic Probe itself. It is covered in more detail in chapter Updating
Black Magic Probe Firmware (page 110). These are the commands that you
need to give to reset the Black Magic Probe and have the operating system re-
enumerate the device (for ctxLink, the address should be 0x08000000 instead
of 0x08002000):

dfu-util -d 1d50:6018,:6017 -e
sleep 0.5
dfu-util -d 1d50:6018,:6017 -s 0x08002000:leave

If you type the commands by hand, there is of course no need to insert a sleep
between the two calls to dfu-util —your typing will be more than sufficient
delay. However, if you put these commands in a shell script or batch file, a
delay between the two commands is required.

2 There is a reset command for some architectures; however, it resets the target micro-
controller, not the Black Magic Probe.

120 Embedded Debugging with the Black Magic Probe

TRACESWO Capture
If a trace monitor, such as the BlackMagic Trace Viewer (page 73), stays fully
silent —no trace messages & no error messages, the first things to check is
whether there is a good voltage on the VREF pin of the Black Magic Probe. The
reason is that the TRACESWO pin goes through a voltage level shifter on the
Black Magic Probe (like the other debug pins), and that the “target side” of
this level shifter is powered through the VREF pin. If you power the target
through the Black Magic Probe (see the monitor tpwr command, page 46),
this step is moot. If a trace monitor successfully attaches to the Black Magic
Probe, this is also an indication that there is an adequate voltage at the VREF
pin.

If you received TRACESWO output on an earlier launch, and it stops on a re-
launch even though nothing else has changed, you may want to try resetting
the Black Magic Prove, as covered in the preceding section.

Once you have established that the VREF pin is powered, you can subsequently
check, with a logic analyser or an oscilloscope, whether trace data is received
at all on the TRACESWO line. Absence of data means that on the TRACESWO
line means that SWO tracing has not been configured (or not configured cor-
rectly) in the target. Depending on the trace monitor, you may need to config-
ure tracing from inside your source code, or you may need to run a particular
script from GDB or some other tool.

If there is data on the TRACESWO line, check whether it is in the correct
format and with a bit-rate that is in range with the capabilities of the debug
probe. For instance, the Black Magic Probe hardware supports Manchester
mode, whereas ctxLink only supports asynchronous mode. For Manchester
encoding on the Black Magic Probe, the bit-rate is limited to approximately
200 kb/s; asynchronous encoding typically supports higher bit-rates.

If the trace monitor shows an error message along the lines of “access de-
nied” or “failure opening device,” this may indicate either a missing driver
(on Microsoft Windows), or a missing udev rule (on Linux). See chapter Set-
ting up the Black Magic Probe, and specifically the relevant section on either
Microsoft Windows (page 19) or Linux (page 21), for details.

Another test that you can do is to redirect the TRACESWO data to the vir-
tual UART interface of the Black Magic Probe. You can view it using a serial
terminal. Use the following command —see also page 47:

(gdb) monitor traceswo decode

If data now shows up, it means that the target is configured correctly, and
that the Black Magic Probe correctly receives the TRACESWO data. You can
then focus on receiving the data on the dedicated interface.

Embedded Debugging with the Black Magic Probe 121

RTT capture
The CoreSight architecture is designed such that the debug interface runs
independently from the processor core. When the microcontroller drops into
sleep mode, a debug probe can still access it, because the clock of the Debug
Access Port (DAP) still runs.
Real-Time Trace, however, is implemented by having the debug probe poll
a region in SRAM. SRAM is outside the microcontroller core, and whether
a clock on the bus (AHB) is still running in sleep mode, is implementation-
dependent. For example, in case of the STM32 series of microcontrollers, the
bits 0 and 2 must be set in a clock control register:

RCC_AHB1ENR |= SRAMEN | DMA1EN; /* keep SRAM + DMA1 enabled while sleeping */

Other microcontrollers may not offer a straightforward fix or work-around. In
its knowledge base, SEGGER itself has this simple recommendation (empha-
sis is theirs):

Solution: When using RTT, make sure that low-power modes are not used.

TTL-Level UART
The Black Magic Probe has a TTL-level UART for general purpose communica-
tion with a device. This UART can be used together with the SWD interface
or on its own.
A feature of the interface is that the RxD and TxD lines run through level
shifters (just like the pins on the Cortex Debug Header). Thus, you can use
the UART to interface with microcontrollers running at 5V as well as at 3.3V,
2.5V. . . down to 1.2V. The implication is, however, that there needs to be a
voltage on the secondary side of the level shifters. This is why the UART
connector (4-pin 1.25 mm pitch “PicoBlade”) has a VCC pin —VREF would be
a more accurate name. The logic voltage of the device should be connected
to this pin.
The VCC pin on the UART connector is the same as the VREF pin on the de-
bug header. When the VREF pin is powered from the Black Magic Probe (the
monitor tpwr command), so is the VCC pin. If the attached target is running
on 3.3V, the wire to VCC is optional if you instead power the secondary side
of the level shifters through the Black Magic Probe.

GDB on Microsoft Windows
GDB may optionally use an “index cache” to increase performance on debug-
ging large executables. It stores this cache in the “home” directory of the

122 Embedded Debugging with the Black Magic Probe

workstation. To find the home directory, it uses the HOME environment vari-
able. In Microsoft Windows, this variable is not set by default. Therefore, on
launching GDB, you may be greeted with the warning:
warning: Couldn't determine a path for the index cache directory.

This warning may be safely ignored; for executable files of the scale that fit
in a microcontroller, you are unlikely to notice any reduced performance.
Alternatively, you can set the HOME environment variable before launching
GDB:
SET HOME=%USERPROFILE%

or in PowerShell:
$Env:HOME = $Env:USERPROFILE

To keep the variable permanently set (instead of having to re-type it each time
that you open a console to run GDB), you can add the variable to the list of
static environment variables, in the System Properties dialog, TAB Advanced.
After clicking on the button Environment Variables (near the bottom of the
dialog), you will be presented with a new dialog with two lists of environment
variables: one for the variables for the current user and one for the system
variables (valid for all users). If you are the only user of the workstation, it
makes no difference which one you take.

Embedded Debugging with the Black Magic Probe 123

Microcontroller Driver Support
Microcontrollers frequently need some configuration to set up specific GDB
functions or SWO tracing. For example, the section Flash Memory Remap on
page 33 addressed a step that is needed before you can download code into
the microcontrollers of the LPC families from NXP. In that section, we also
recommended defining a command for that step in the .gdbinit file.
The utilities BMFlash and BMDebug run MCU-specific scripts to remap mem-
ory, and the utilities BMTrace and BMDebug also run MCU-specific scripts to
configure SWO tracing. These utilities contain the scripts embedded in the ex-
ecutable, and they establish which script to run by evaluating the name of the
MCU driver that the Black Magic Probe returns on attaching to it. However,
the Black Magic Probe is continuously enhanced and extended, and microcon-
troller support is growing. To that end, the predefined hard-coded scripts can
be extended or overruled.
Script definitions for new (or modified) scripts must be stored in a file with
the name “bmscript” (no file extension). On Microsoft Windows, this script
must be stored in the “BlackMagic” directory on the (roaming) “Application
Data” folder. The “INI” files for the diverse utilities are stored here as well.
On Linux, the bmscript file must be stored in the “.local/share/BlackMagic”
directory below the home directory of the current user.
The syntax of the definitions in the bmscript file is similar to that of .gdbinit,
but it is not compatible with it. Only “define” statements can occur in bm-
script, and these define statements must conform to either a register defini-
tion, or a script definition.
define SYSCON_SYSMEMREMAP [lpc8xx, lpc11xx, lpc12xx, lpc13xx] = {int}0x40048000
define SYSCON_SYSMEMREMAP [lpc15xx] = {int}0x40074000
define SCB_MEMMAP [lpc17xx] = {int}0x400FC040
define SCB_MEMMAP [lpc21xx, lpc22xx, lpc23xx, lpc24xx] = {int}0xE01FC040

define memremap [lpc8xx, lpc11xx, lpc12xx, lpc13xx]
set SYSCON_SYSMEMREMAP = 2

end

define memremap [lpc15xx]
set SYSCON_SYSMEMREMAP = 2

end

define memremap [lpc17xx]
set SCB_MEMMAP = 1

end

define memremap [lpc21xx, lpc22xx, lpc23xx, lpc24xx]
set SCB_MEMMAP = 1

end

124 Embedded Debugging with the Black Magic Probe

As is apparent in the above example, each register and each script has a list of
microcontroller driver names between square brackets after the name. These
driver names are the names that the Black Magic Probe reports when it scans
the attached target. The name may end with an asterisk, for a wildcard. For
example, if “STM32F1*” appears in this list, it matches STM32F101T8 as well as
STM32F103C8.
The list of MCU drivers is a filter for the definition. Because of this filter, there
is no conflict to define the same register name or script name twice, provided
that there is no overlap in MCU driver names.
The names of the registers may be freely chosen, but the names of the scripts
are predefined by the BMFlash, BMTrace and BMDebug utilities. The scripts
that are currently defined are:
memremap To make sure that the microcontroller’s Flash memory map

conforms to the ELF file layout —see also page 33.
partid To read the microcontroller’s “device id” or “id-code”.
swo device For the MCU-specific configuration for SWO tracing.
swo trace For the configuration for SWO tracing that is common to all

ARM Cortex microcontrollers.
swo channels To set the mask for enabled channels (for SWO tracing); this

script is common to all ARM Cortex microcontrollers.
swo profile To configure statistical profiling through the Instrumentation

Trace Macrocell (ITM) and Data Watchpoint & Trace (DWT)
units; this script is also common to all ARM Cortex microcon-
trollers.

swo close To disable SWO tracing and profiling (reset ITM and DWT); this
script is common to all ARM Cortex microcontrollers.

You will typically only add (or replace) the first three of this list, but you can
override the generic scripts for a particular microcontroller as well.
The only operations allowed on the registers (within a script) are assignment
with “=,” “|=” and “&=,” which function in the same way as in GDB (and the
C language). Numbers can be in decimal or hexadecimal notation, a “~” may
prefix a value (or register) to denote the bitwise inversion of the value.
The operand on the left of the assignment operator is always considered an
address. A literal number or a parameter on the right of the operator is con-
sidered a value. Thus, the literal or the value of the parameter is stored at
the address at the left. The C dereference operator“*” can be used to inter-
pret the value as a pointer, and read the value that the literal points to. A
register does not need a dereference operator; it is always considered to be
an address that needs to be dereferenced.

Embedded Debugging with the Black Magic Probe 125

A parameter is specified as “$0” to “$9”. The number of parameters and their
values depends on the script. For the swo_channels script, for example, the
single parameter $0 is the bit mask of enabled channels. See the “bmscript”
file that is provided with the utilities for details on the parameters for each
script. When a parameter appears at the right side of an assignment, you may
add both a shift value and a literal value behind it. The value of the parameter
is then shifted left by the shift value and the literal value is merged with a
binary “or” operation.
For a script that has a result (to be used by BMDebug, BMProfile, BMTrace or
BMFlash), the result must be assigned to the special parameter “$” (no value
following the dollar symbol).
define DBGMCU_IDCODE [stm32f0*] = {int}0x40015800

define partid [stm32f0*]
set $ = DBGMCU_IDCODE

end

The assignment to the “$” parameter should also be the last statement in the
script. At the moment, this is relevant only to the “partid” script (the other
scripts do not return a value).

126 Embedded Debugging with the Black Magic Probe

Unified Connector: Debug + UART
Hardware version 2.3 of the Black Magic Probe has the option to link the UART
TxD and RxD to pins 7 and 9 of 10-pin Cortex Debug connector. The black-
magic project calls it the “unified connector” —or BMDU, which stands for
Black Magic Debug Unified.

When comparing the pin-out of the unified connector to that of the standard
Cortex Debug header on page 24, you will note that RxD replaces a ground
pin, and TxD is on an originally unconnected pin.

To make these connections, two pairs of “jumper” pads on the back of the
Black Magic Probe must be joined with a dot of solder, and a trace between
another pair of jumper pads must be cut. The image below shows the locations
of the joints and the cut, in the lower right corner. The operation is reversible,
but it requires a soldering iron.

For reference, the connections between the two connectors and the jumpers
is illustrated schematically as well. Note that the pins marked VREF (on the
Debug header) and VCC (on the UART connector) are actually connected to
each other as well, though this is not drawn.

The unified connector will only be functional if the target device uses it too.
If the target uses the standard pin-out of the Cortex Debug header, it will

Embedded Debugging with the Black Magic Probe 127

link RxD to ground. Serial communication will then not work, neither via the
unified connector, nor via the 4-pin UART connector (RxD of the UART con-
nector is linked to RxD on the unified connector —which is pulled to ground
by a target that uses the standard pin-out). Pin 7 on the Cortex Debug header
is officially the “key” pin, intended to avoid incorrect alignment or orientation
of the cable connector on the header. Instead of cutting off the pin, the Black
Magic Probe simply left it unconnected, and this is actually common practice.

128 Embedded Debugging with the Black Magic Probe

Linking TRACESWO to UART-RxD
Part of why this book exists is for our own reference in how to configure and
use the Black Magic Probe and its surrounding utilities. That may already have
been conspicuous in the coverage of the ARM Cortex M0/M0+ architectures
and the peculiarities of the NXP LPC series of microcontrollers —we happen
to use these low-end microcontrollers a lot. Presented here, in this chapter,
is a small modification that we make to the Black Magic Probes that we own
—even though it is doubtful that many others will find it as useful as we do.

The modification is that we add a miniature slide switch (specifically: TE Con-
nectivity product MLL1200S) that optionally connects the TRACESWO pin on
the Cortex Debug connector to the RxD pin on the TTL-level UART connector.
The switch is glued to the bottom of the PCB and two of its three pins are sol-
dered to the test pads indicated with the light blue circles. The image above
is for hardware version 2.1; the one below is for hardware version 2.3.

Linking TRACESWO to RxD enables the Black Magic Probe to receive the asyn-
chronous SWO tracing protocol, although it now receives it via the UART in-
terface instead of through the dedicated raw-data interface. Alternatively, it
allows you to use UART tracing (page 61) over the debug connector, so that
you only need a single cable between the debug probe and a Cortex M0 micro-
controller (which lacks support for SWO tracing). The criterion for a “single
cable” is especially relevant for our use of the tag-connect cable, see page 15.

Note that when the TRACESWO and RxD signals are linked, you can no longer
use the secondary UART concurrently with debugging: if you do, the target
device would see the TRACESWO ouput shorted to TxD. This is the reason for
adding a switch in the connection —so to be able to choose between either

Embedded Debugging with the Black Magic Probe 129

standard Manchester SWO and a secondary UART, or asynchronous SWO (and
forgo the UART).
This “patch” is independent of the modification to come to a unified debug
connector, in the preceding chapter. You can do both adjustments at the same
time. In principle, the unified connector solves the same problem as this
patch. However, our motivation is to be able to use standard (and readily
available) cables, and specifically the tag-connect cable.

130 Embedded Debugging with the Black Magic Probe

Further Information

Hardware
Black Magic Probe: The official Black Magic Probe hardware is available
from:

1BitSquared https://1bitsquared.de/products/black-magic-probe
adafruit https://www.adafruit.com/product/3839
elektor https://www.elektor.com/
Mouser https://www.mouser.com/

ctxLink: can be obtained from:
Sid Price http://www.sidprice.com/ctxlink/
Crowd Supply https://www.crowdsupply.com/sid-price/ctxlink
Mouser https://www.mouser.com/

Jeff Probe: can be obtained directly from Flirc:
https://flirc.tv/products/flirc-jeffprobe

3D Printed Enclosures for the Black Magic Probe can be found on Thingiverse.
A simple clip that offers some protection for the 10-pin Cortex Debug header
(see page 21) is “thing” 2387688 (by Michael McAvoy); a full enclosure with
openings for the connectors, LEDs and button is “thing” 2836934 (by Emil
Fresk).

https://www.thingiverse.com/
Designs for ctxLink enclosures can be downloaded from Sid Price’s GitHub
page:

https://github.com/sidprice/ctxLink cases

tag-connect: cables with a pogo-pin plug, specifically suited for firmware
programming and debugging. The cable suitable for the ARM Cortex SWD
interface are TC2030-CTX and TC2030-CTX-NL. See also page 15.

https://www.tag-connect.com/
freeconnect: open-source a pogo-pin connectors by Rafael Silva, as an al-
ternative to tag-connect cables.

https://perigoso.github.io/freeconnect/

PCBite: PCB holders and needle probes:
https://sensepeek.com/

Software
Black Magic Probe: The project website contains links to downloads, docu-
mentation and schematics:

https://black-magic.org/

Embedded Debugging with the Black Magic Probe 131

Active development of the firmware happens on the GitHub project.
https://github.com/blackmagic-debug/blackmagic

Notes on building the firmware are in the wiki of this GitHub project. How-
ever, these notes are Linux-centric. For building on Microsoft Windows, see
the additional notes on Sid Price’s blog, specifically:

http://www.sidprice.com/2020/03/24/building-blackmagic-probe-on-windows/
http://www.sidprice.com/2018/05/23/cortex-m-debugging-probe/

dfu-util: A utility to update the firmware of USB devices that support the
DFU protocol.

http://dfu-util.sourceforge.net/

Zadig: A utility for installing the drivers for SWO tracing and firmware up-
date, see chapter Setting up Black Magic Probe, specifically page 19.

https://zadig.akeo.ie/

libusbK: Drivers, support DLLs and development files for generic USB device
access.

http://libusbk.sourceforge.net/UsbK3/

Orbuculum: A set of utilities to process the output ARM Cortex Debug inter-
face (SWO tracing, exception trace, performance profiling, . . .), see also page
65.

https://orbcode.org

gdbgui: Various GDB front-ends were mentioned in chapter Requirements
for Front-ends (page 11), but we have singled out gdbgui because it is cross-
platform and open-source, and it offers the required features in a simple in-
terface.

https://www.gdbgui.com/

Troll: A source-level debugger supporting the Black Magic Probe, that is in-
dependent of GDB.

https://github.com/stoyan-shopov/troll

turbo: A GDB front-end with specific support for the Black Magic Probe, by
the author of the Troll debugger.

https://github.com/stoyan-shopov/turbo

Cortex Debug: Visual Studio Code extension that adds debugging functions,
with (initial) support for the Black Magic Probe.

https://github.com/Marus/cortex-debug

GnuWin32: The GnuWin32 project has native Windows ports of many GNU
utilities, like the core utilities and RCS.

http://gnuwin32.sourceforge.net/

SvnRev & Autorevision: Utilities to extract revision numbers or hashes from
version-control repositories.

132 Embedded Debugging with the Black Magic Probe

https://www.compuphase.com/svnrev.htm
https://autorevision.github.io/

Articles, Books, Specifications
Debugging with GDB; Richard Stallman, Roland H. Pesch & Stan Shebs;
Free Software Foundation, 2011; ISBN 978-0-9831592-3-0.

The book is also available in PDF and HTML formats on:
https://www.gnu.org/software/gdb/documentation/

Embedded Debugging with the Black Magic Probe (this book) is available
on GitHub in PDF format. The tools mentioned in this book, BMScan, BMDe-
bug, BMProfile, BMTrace, BMFlash, elf-postlink and tracegen, live there as
well.

https://github.com/compuphase/Black-Magic-Probe-Book

The Art of Debugging with GDB, DDD, and Eclipse; Norman Matloff &
Peter Jay Salzman; No Starch Press, 2008; ISBN 978-1593271749.
The Definitive Guide to the ARM Cortex-M3, second edition; Joseph Yiu;
Newnes Press, 2009; ISBN 978-1856179638.
Writing Solid Code, second edition; Steve Maguire; Greyden Press, LLC,
2013; ISBN 978-1570740558.
Common Trace Format: The specification of the binary format as well as the
Trace Stream Description Language (TSDL), see chapter The Common Trace
Format on page 79.

https://diamon.org/ctf/

SEGGER RTT: Resources and documentation for SEGGER’s Real Time Trans-
fer protocol, including portable source code to include in your firmware, view-
ers, loggers and other tools.

https://wiki.segger.com/RTT

SVD repository: A collection of “System View Description” files for various
microcontrollers can be found on GitHub:

https://github.com/posborne/cmsis-svd

Embedded Debugging with the Black Magic Probe 133

Index

! * (asterisk), 96
.bmcfg file, 57, 106
.gdbinit file, 27, 32, 33, 44, 67, 124
! (exclamation mark), 58
~ (filter character), 74
1BitSquared, 1, 131

A Access memory, 33
Access point, 23, 24
adafruit, 131
Adapter board, 25
addr2line utility, 96
Address look-up, 96
Addyi (drug), 2
ADI5, 7
Akeo Consulting, 19
Altering execution flow, 40
Apache Subversion, see Subversion
Application Data folder, 124
ARM CoreSight, 60, 67, 75, 99, 122
ARM Cortex, 1, 63, 75

M0/M0+ architecture, 9, 29, 49, 63, 65,
70, 100, 129

ASCII, 84
Assembly code, 45, 55
Assertions, 93, 94
Asterisk, 96, 125
Asynchronous encoding, 8, 47, 56, 67, 68,

73
Attach target, 27
~ troubleshooting, 115, 118

Autocompletion, 52, 53
AutoDesk Fusion, 18
Automatic download, 51, 58
Autorevision utility, 107, 132

B Babeltrace, 83
backtrace (command), 44, 96
barectf utility, 80, 88, 92
Base (number), 83
Battery, 18, 23
~ connector, 14
~ status, 23

Bit rate, 67
Bit-banging, 71
BKPT (instruction), 63
Black Sphere Technologies, 1
blackmagic utility, 114, 116, 117
bmcfg file extension, 57, 106
BMDA, see Hosted set-up
BMDebug (front-end), 32, 44, 50, 51–55, 57,

58, 63, 92, 96

BMDU, see Unified Connector
BMFlash utility, 7, 36, 51, 104, 105
BMProfile utility, 100
BMScan utility, 19, 21, 24, 26, 104
bmscript file, 124
BMTrace utility, 7, 73, 74, 80, 92, 121
Boot pin, 29
Bootloader (MCU), 16, 29, 33, 115
Break on exceptions, 49
Break-out board, 15, 25
Breakpoint, 10, 40, 41, 53, 60, 77

command list, 77
conditional ~, 41, 42
disable ~, 53
enable / disable, 41
enable ~, 53
hardware ~, 10, 37, 53, 78
~ ID, 40
one-time ~, 40
software ~, 62, 95

Button, see Push-button

C Calculator, 43
Call stack, 44, 78, 96
Calltree, 102, 103
Case-insensitive (search), 53
CDC class driver, 19–21, see also Serial port
cflow (utility), 102
Channel (tracing), 65, 74, 89
Checksum, 106

vector table, 36, 51
cksum utility, 106
Clone (debug probe), 61
CMSIS, 54, 63, 65, 95
Code instrumentation, 60, 62, 78

function entry & exit, 96
Code Read Protection, 34, 35, 36, 50, 108,

109, 115
CoderGears, 102
COM port, 26
Command file (GDB), 28, see also .gdbinit

file
Command line

autocompletion, 52, 53
history, 52

Command list, 77

134 Embedded Debugging with the Black Magic Probe

Commands (GDB), 27
attach, 27
backtrace, 44, 96
compare-sections, 36, 104
connect srst, 29
continue, 77, 78
define, 27
disassemble, 45, 55
display, 42, 54
file, 32
help, 37, 39, 58
info, 37, 58, 96
load, 33, 34, 51, 58
monitor, 11, 26, 34, 35, 42, 45, 111
print, 43
reset, 47, 58, 59
run, 36
start, 36
target, 26
trace, 56
user-defined, 27, 33

Common Trace Format, 56, 57, 73, 74, 79,
81, 82, 92, 97, 133

compare-sections (command), 36, 104
Conditional breakpoint, 41, 42
Conditional compilation, 61
connect srst (command), 29
Connector pin-out, 25, 127
Console (GDB), 11, 32, 52
continue (command), 77, 78
Control block (RTT), 75, 76
CoreDebug, 63
CoreSight architecture, 60, 67, 75, 99, 122
Cortex Debug header, 13, 15, 17, 18, 25, 25,

65, 127, 129
Cortex M0/M0+ architecture, 9, 29, 49, 63,

65, 70, 100, 129
CppDepend (utility), 102
CRC mismatch, 51
Crowd Supply, 131
CSV file, 101, 103, 106
CTF, see Common Trace Format
~ packet, 81

ctxLink (debug probe), 1, 6, 14, 17, 18, 23,
26, 110, 113, 120

Cygwin, 117

D Daily build, see Development release
Dangling-else problem, 94
Data trace, 60
DDD (front-end), 5, 12
Debug Access Port, 1, 29
Debug connector, see Cortex Debug header
Debug Port, 8
Debug probe, 1, 5, 6
~ effect, 79

Debug symbols, 32, 33, 96
Debugger attached check, 29, 63

Development release (firmware), 110
Device Manager (Microsoft Windows), 19
DFU
~ mode, 21
~ protocol, 19, 21, 110, 120

dfu-util, 21, 110, 132
DHCP, 24
DHCSR, 29, 63
dialout group, 22, 113
DiaMon, 79, 81
Disable breakpoint, 41, 53
disassemble (command), 45, 55, see also As-

sembly code
display (command), 42, 54
Download to target, 33, 51, 58, 104
DTR (serial port), 26
Duplicate strings, 94
DWARF, 32, 101, see also Debug symbols
DWT, 60, 125

E Eclipse (front-end), 5, 11
Edit-Compile-Debug Cycle, 58
Elektor, 131
ELF file, 36, 51, 105
elf-postlink utility, 36, 51
Emulating SWO tracing, 70
Enable breakpoint, 41, 53
Enclosure, 17, 131
Endianness, 84, 85
Entry (function), 96
Entry point, 51
Environment variables, 27, 123

HOME, 122
Erase Flash memory, 38

failure to ~, 119
ESD-protection, 18
Ethernet, 81
ETM, 60
Event (CTF), 87
~ header, 81, 87
~ id, 87

Exceptions, 49
Execution point, 45, 52

altering ~, 40
Exit (function), 96

Embedded Debugging with the Black Magic Probe 135

F file (command), 32
Filter, 74
Find text (in source code), 53
Firmware download, see Download to target
Firmware update, 19, 20, 110
Fixed-point numbers, 83
Flash memory, 10, 11, 28

erase troubleshooting, 119
~ programming, 28, 104, 104, see also

BMFlash
~ remap, 33

Flirc, 131
Frame (call stack), 44
freeconnect (plug-of-nails), 16, 131
Fresk, Emil, 17, 131
Front-end, 5, 11, 12

BMDebug, 32, 44, 50, 51–55, 57, 58, 63
gdbgui, 31, 58

FTDI MPSSE, 114
Function entry & exit, 96, 99
Function key, 53, 55

G Gait, J., 79
Galvanic isolation, 18
GDB

commands, see Commands (GDB)
~ console, 11, 32, 52
versions 11 & 12, 118

gdbgui (front-end), 12, 31, 42, 58, 132
gdbserver, 1, 5–7, 19, 21, 26, 45, 74, 120
git, 107
GitHub, 3, 54, 110, 111, 116, 131–133
~ hash, 111

GnuWin32, 106, 107, 132

H Halfword, 43
Hammer (Law of the ~, 79
Hard reset, 59
HardFault handler, 63, 64
Hardware breakpoint, 10, 37, 53, 78

number of ~, 10
Header byte (SWO), 10
heapinfo (semihosting), 49
help (command), 37, 39, 58
History (commands), 52
HOME environment variable, 27, 122
Hosted set-up, 114, 117
HTTP provisioning, 23

I IDC header, 25
ident utility, 107
Identifier (format), 89, 90
Index cache directory, 122
Inference rule (Make), 91
info (command), 37, 58, 96
Inline function, 97
Inlined function, 59
Instruction trace, 60
Instrumented profiling, 99
Instrumented trace, 60
Instrumenting code, see Code instrumenta-

tion
Interrupt Service Routine, 10
Invariants, 93
Isolation, see Galvanic isolation
ISP, 36
ITM, 8, 9, 65, 67, 92, 125

J J-Link (Segger), 5, 73
Jeff Probe, 15, 77
Jeff Probe (debug probe), 110
Jitter, 88
JST PH connector, 14, 18
JTAG, 1, 5, 7, 25, 26
~ header, 16, 25

K KDbg (front-end), 5, 11
Keil ULINK-ME, 5

L Latency, 79
Law of the Hammer, 79
LED, 21, 26, 46, 113
Level shifters, 25, 46, 115, 121, 122
Li-Po battery, 15, 17, 18, 23
libopencm3, 54, 63
librdimon, 63
libusbK, 20, 21, 132
License, 4
Line number lookup, 96
Link Register, 95
Linux, 117
Linux Foundation, 79
Little Endian, 106
load (command), 33, 34, 51, 58
Log file, 106, 108
LPC microcontrollers, 29, 33, 35, 36, 51, 69,

70, 105, 108
Flash Memory Remap, 33

LTTng, 80

136 Embedded Debugging with the Black Magic Probe

M MAC address, 24
Machine code, see Assembly code
Maguire, Steve, 93, 133
Make (utility), 91
Manchester encoding, 8, 9, 56, 67, 68, 73

clock derivation, 9
emulation, 71

Maslow, Abraham, 79
Matloff, Norman, 3, 133
McAvoy, Michael, 17, 131
MCU support scripts, 124
MEMMAP (register), 33, 124
Memory
~ access, 33
display / set ~, 42, 43
~ watch, 55

Merge strings, 94
Metadata file (CTF), 56, 57, 79, see also

TSDL
micro-USB, 13
Microsoft Windows, 116, 117
monitor (command), 11, 26, 34, 35, 42, 45,

111
Morse code, 46
Mouser, 131
msys2, 117

N Needle probes, 16
Nemiver (front-end), 11
Network scan, 24, 26
newlib C library, 49, 63
Nightly build, see Development release
Non-intrusive debugging, 60, 79
NRZ encoding, see Asynchronous encoding
NTRACE macro, 91
Number base, 83

O On-the-go programming, 13
One-time breakpoint, 40
OpenOCD, 6
Optimized code, 39, 59, 59
Option bytes (STM32), 34, 35, 108, 109
Orbuculum, 67, 73, 132
Overvoltage protection, see Galvanic isola-

tion

P Packet
~ header (CTF), 81, 82, 85, 89, 91
~ header (ITM), 9, 65
~ layout (CTF), 81

Packet-based protocol, 81
Parity bit, 8
Part ID, 125
Passive listener, 56, 74
PCBite, 17, 131
Performance optimization, 99
Peripheral register, 8, 44
PicoBlade connector, 13, 14, 122
plugdev group, 22
Pogo-pins, 16, 131
POSIX checksum, 106
Post-conditions, 93
Post-mortem analysis, 60
Post-processing, 108
Power saving (microcontroller), 99
Power selection (ctxLink), 15
Power-cycle, 35, 59, 108, 109
Pre-conditions, 93
Price, Sid, 17, 117, 131, 132
print (command), 43
printf, 63
printf-style debugging, 11, 93
Probe, see Debug probe
~ effect, 79, 99

Production code, 61
Profiling, 99, 125
Protocol

packet-based ~, 81
remote ~, see RSP
stream-based ~, 81

Push-button (on board), 13, 21, 23

R RCS identification string, 106, 107
rdimon.specs, 63
RDP (STM32), 34, 35, 108, 109, 119
Read Protection, see Code Read Protection
Real Time Transfer (RTT), 15, 48, 75, 77
Register

debug ~, 8
peripheral ~, 8, 44, 54
view ~, 45, 54

Remote Serial Protocol, see RSP
reset (command), 47, 58, 59
Reset (debug probe), 120
Reverse calltree, 102
Ribbon cable, 15
Ring buffer, 75
RS232, 5, 26, 81, see also UART
RSP, 5, 7, 73, 101, 104, 119, 120
RTOS, 65, 92
RTT, 133, see Real Time Transfer
run (command), 36
Run from GDB, 58

Embedded Debugging with the Black Magic Probe 137

Run-time calltree, 102, 103
Run-time tracing, 11, 60, 60, 93
RZ encoding, see Manchester encoding

S Salzman, Peter, 3, 133
SAM microcontrollers, 69
Sampling (profiling), 99
Scan targets, 47
~ troubleshooting, 117

SciTools, 102
Scope (variables), 44
Script, 124
Scripts (MCU support), see MCU support

scripts
Section (ELF file), 105
Segger, 122, 133
~ J-Link, 5, 73
~ RTT, 15, 48, 75, 77

Self-destruct code, 36
Semihosting, 49, 55, 61–63, 93, 96
Sensepeek, 17, 131
Serial monitor, see Serial terminal
Serial number, 105
Serial port, 22, 74, see also UART
Serial terminal, 48, 55, 61, 77

RTT, 77
SWO tracing, 48, 72

Serial Wire Debug, see SWD
Serialization, 105, 106
Side-effect, 93
Signature (RTT), 48, 75
Silva, Rafael, 131
Sleep mode, 122
Software breakpoint, 62, 95
Software trace, 60
sprintf, 79
SSID (Wi-Fi), 23, 24
ST-Link clone, 61
Stable release (firmware), 110
Stack
~ frame, 44
~ pointer, 64
~ trace, 41

start (command), 36
Static calltree, 102, 103
Statistical profiling, 99, see also Profiling
stderr, 62
stdint.h, 84
Stepping through code, 38

by instruction, 45, 55
skip functions, 39

Stimulus ports, 65, 92
STM32 microcontrollers, 29, 34, 35, 68,

108, 109
option bytes, 34, 35, 108
RDP, 34, 108

Stop & Stare, 60
Stream (CTF), 86–88

Stream-based protocol, 81
String, 84
Stub (debugger), 5, see also gdbserver
Subversion, 107
sudo, 22, 111
SVC (instruction), 63
SVD file, 54, 133, see also System View De-

scription
SVDConv utility, 54
SvnRev utility, 107, 132
SW-DP protocol, 27, 118
SWCLK, 7, 25, 30, 47, 59, 118
SWD, 1, 5, 7, 25, 26, 28, 29, 75
SWDIO, 7, 25, 59
SWDP scan, 29
~ troubleshooting, 117

SWO Tracing, 47, 55, 65, 81, 86, 89, 90, 92
emulation, 70
protocol, 9, 66
troubleshooting ~, 121

Symbolic information, see Debug symbols
SYSMEMREMAP (register), 33
System View Description, 54, 133

T tag-connect (plug-of-nails), 16, 16, 129, 131
Target

attach ~, 27
GDB command, 26
~ list, 47
~ power, 25, 121
scan ~, 47, 117

Temporary breakpoint, see One-time break-
point

Terminal (program), see Serial terminal
Text search, see Find text
Thingiverse, 131
Thumb mode (ARM), 95
Time stamp, 74
Torx (screw head), 3
TPIU, 67
trace (command), 56
Trace capture, 19, 20, 22, 67
Trace context (CTF), 85
Trace Viewer, 73, 79, 80, see also BMTrace
tracegen utility, 80, 83, 84, 86, 88, 90, 91,

92, 98
TRACESWO, 8, see also SWO Tracing
~ pin, 9, 25, 61, 65, 121, 129

traceswo (command), 67
Tracing, see Run-time tracing
Trailing-zero compression, 9, 57, 66
Transfer speed, 65, 79
Troll debugger, 7, 132

138 Embedded Debugging with the Black Magic Probe

Troubleshooting, 113
connection, 113
GDB, 118
SWO Tracing, 121
target, 114
UART, 122

TSDL, 79, 80, 81, 92, 102, 133, see also
Common Trace Format
types, 84

TTL-level UART, see UART
TUI, 5, 12
turbo (front-end), 132
Turnaround, 7
typealias, 83, 84
typedef, 83
Types (TSDL), 84

U UART, 8, 13, 14, 19, 21, 55, 56, 61, 121, 129
troubleshooting, 122

udev rules, 22, 23, 111, 121
ULINK-ME (Keil), 5
Understand (utility), 102
Unicode, 106
Unified Connector, 127, 130
Unit testing, 93
USB, 81
USB ID, 21
User-defined command, 27, 33
UTF-8, 84
UUID, 85, 86

V Value history, 43
Variable, 42, 43

display format, 54
~ watch, 42, 54

Vector table checksum, 36, 51
vector catch (command), 42
Version-Control software, 107
vFlashErase packet, 34, 119
VID:PID, 6, 21
VirtualBox, 117
Visual Studio, 12
Visual Studio Code, 12, 132
VisualGDB (front-end), 12
Voltage level, 25, 115, 121
VS Code, see Visual Studio Code

W Watch variable, 42, 54
register, 45

Watchpoint, 11, 40, 41
Weak linkage, 95
WFI, 122
Wi-Fi link, 6, 23
Wiki, 132
Wildcard character, 125
WinGDB (front-end), 12
WinUSB device, 20, 21
WPS, 23

Y YAML, 80
Yiu, Joseph, 66, 133

Z Zadig, 19–21, 132
Zero-terminated string, 84

Embedded Debugging with the Black Magic Probe 139

	Introduction
	Hardware and Software
	Why bother, why choose the difficult route?
	About this Book
	License

	The Debugging Pipeline
	GDB Architecture
	Bypassing GDB

	The Serial Wire Debug Protocol in a Nutshell
	TRACESWO Protocol

	Embedded Debugging: Points for Attention
	Requirements for Front-ends

	Hardware Overview
	Accessories

	Setting up the Black Magic Probe
	Microsoft Windows (USB set-up)
	Linux (USB set-up)
	Wi-Fi set-up for ctxLink
	Connecting the Target
	Checking the Set-up
	Running Commands on Start-up
	Design for Debugging

	Debugging Code
	Prerequisite Steps
	Loading a File and Downloading it to the Target
	Flash Memory Remap
	Reset Code Protection
	Verify Firmware Integrity

	Starting to Run Code
	Getting help and information
	Listing Source Code
	Downloading code into the microcontroller
	Stepping and Running
	Altering execution flow

	Breakpoints and watchpoints
	Examining Variables and Memory
	The Call Stack
	Inspecting Machine Code
	Debug Probe Commands
	Information and status
	Target and protocol configuration
	Target scanning
	SWO (trace capture)
	Real Time Transfer
	Miscellaneous (MCU-specific)

	The BlackMagic Debugger Front-end
	Starting up
	GDB Console and Command Line
	Source View
	Running code
	Breakpoints
	Viewing Variables and Registers
	Viewing Assembly Code
	Viewing Memory
	Trace Views
	Help and info

	Edit-Compile-Debug Cycle
	Debugging Optimized Code

	Run-Time Tracing
	Levels of Tracing
	Secondary UART
	Semihosting
	SWO Tracing
	SWO Tracing on the Cortex M0/M0+
	Monitoring Trace Data

	Real Time Transfer (RTT)
	Tracing with Command List on Breakpoints

	The Common Trace Format
	Binary Packet Format
	A Synopsis of TSDL
	General structure
	Trace context
	Packet header
	Stream Declaration
	Event header
	Event Declaration
	Timestamps
	Scaling up: multiple streams, many events

	Generating Trace Support Files
	Integrating Tracing in your Source Code
	Mixing Common Trace Format with Plain Tracing

	Applications for Run-Time Tracing
	Code Assertions
	Tracing Function Entry and Exit

	Code Profiling
	Sampling on ARM Cortex
	Calltree Analysis

	Firmware Programming
	Using GDB
	Using the BlackMagic Flash Programmer
	Serialization
	Log file
	Post-processing
	Miscellaneous tools

	Updating Black Magic Probe Firmware
	Troubleshooting
	Check whether the system detects the probe
	Check whether the probe detects the target
	How to get the hosted blackmagic utility?

	Target scan hangs
	GDB crashes on ``attach''
	Failure to erase Flash memory
	Spying on the communication
	How to Reset the Black Magic Probe
	TRACESWO Capture
	RTT capture
	TTL-Level UART
	GDB on Microsoft Windows

	Microcontroller Driver Support
	Unified Connector: Debug + UART
	Linking TRACESWO to UART-RxD
	Further Information
	Hardware
	Software
	Articles, Books, Specifications

	Index

